
OpenRules, Inc.

www.openrules.com

August-2013

OPENRULES
®

Open Source Business

Decision Management System

Release 6.2.5

User Manual

http://www.openrules.com/

OpenRules, Inc. OpenRules® User Manual

2

Table of Contents

Introduction .. 6

Brief History ...6

OpenRules® Components ..7

Document Conventions...7

Core Concepts ... 8

Spreadsheet Organization and Management .. 9

Workbooks, Worksheets, and Tables ...9

How OpenRules® Tables Are Recognized .. 10

OpenRules® Rule Table Example .. 12

Business and Technical Views ... 13

Decision Modeling and Execution .. 14

Starting with Decision ... 15

Defining Decision Tables ... 18

Decision Table Execution Logic .. 20

AND/OR Conditions .. 20

Decision Table Operators ... 21

Using Regular Expressions in Decision Table Conditions ... 24

Conditions and Conclusions without Operators .. 24

Using Decision Variable Names inside Decision Table Cells 25

Using Formulas inside Decision Tables .. 26

Direct References to Decision Variables .. 27

Defining Business Glossary .. 28

Defining Test Data .. 29

Connecting the Decisions with Business Objects .. 31

Decision Execution .. 32

Decision Analysis .. 33

Decision Testing ... 33

Decision Syntax Validation ... 34

Decision Execution Reports .. 35

Decision Tracing ... 38

Rules Repository Search ... 39

Consistency Checking ... 40

Advanced Decision Tables ... 40

Specialized Conditions and Conclusions ... 40

Specialized Decision Tables ... 41

DecisionTable1 ... 41

OpenRules, Inc. OpenRules® User Manual

3

DecisionTable2 ... 43

Business Rules Defined on Collections of Objects ... 44

Decision Tables for Comparing Ranking Lists ... 46

Rule Tables ... 47

Simple Rule Table ... 48

How Rule Tables Are Organized .. 50

Separating Business and Technical Information ... 53

How Rule Tables Are Executed .. 56

Relationships between Rules inside Rule Tables ... 56

Multi-Hit Rule Tables .. 57

Rules Overrides in Multi-Hit Rule Tables ... 58

Single-Hit Rule Tables ... 60

Rule Sequences .. 61

Relationships among Rule Tables ... 62

Simple AND / OR Conditions in Rule Tables ... 63

Horizontal and Vertical Rule Tables ... 64

Merging Cells .. 64

Sub-Columns and Sub-Rows for Dynamic Arrays .. 65

Using Expressions inside Rule Tables ... 66

Integer and Real Intervals .. 66

Comparing Integer and Real Numbers ... 68

Using Comparison Operators inside Rule Tables ... 69

Comparing Dates .. 70

Comparing Boolean Values .. 71

Representing String Domains ... 72

Representing Domains of Numbers ... 73

Using Java Expressions ... 73

Expanding and Customizing Predefined Types .. 75

Performance Considerations .. 75

Rule Templates ... 75

Simple Rules Templates .. 76

Defining Default Rules within Templates ... 77

Templates with Default Rules for Multi-Hit Tables .. 77

Templates with Default Rules for Single-Hit Tables ... 78

Partial Template Implementation ... 79

Templates with Optional Conditions and Actions ... 81

Templates for the Default Decision Tables ... 82

Decision Templates .. 85

OpenRules, Inc. OpenRules® User Manual

4

Decision Table Templates .. 85

Customization... 86

OpenRules® API ... 87

OpenRulesEngine API.. 88

Engine Constructors ... 88

Engine Runs .. 90

Undefined Methods ... 90

Accessing Password Protected Excel Files ... 92

Engine Attachments ... 92

Engine Version .. 92

Dynamic Rules Updates .. 92

Decision API ... 93

Decision Example ... 93

Decision Constructors .. 94

Decision Parameters .. 94

Decision Runs ... 95

Executing Decision Methods From Excel ... 96

Decision Glossary ... 97

Business Concepts and Decision Objects ... 98

Changing Decision Variables Types between Decision Runs 99

Decision Execution Modes ... 100

Logging API ... 100

JSR-94 Implementation ... 101

Multi -Threading.. 102

Integration with Java and XML .. 102

Java Classes .. 102

XML Files... 104

Data Modeling .. 105

Datatype and Data Tables ... 107

How Datatype Tables Are Organized ... 109

How Data Tables Are Organized .. 112

Predefined Datatypes ... 114

Accessing Excel Data from Java - Dynamic Objects ... 115

How to Define Data for Aggregated Datatypes .. 117

Finding Data Elements Using Primary Keys .. 117

Cross-References Between Data Tables ... 118

OpenRules® Repository .. 119

Logical and Physical Repositories .. 120

OpenRules, Inc. OpenRules® User Manual

5

Hierarchies of Rule Workbooks ... 121

Included Workbooks .. 121

Include Path and Common Libraries of Rule Workbooks .. 122

Using Regular Expressions in the Names of Included Files 123

Imports from Java .. 123

Imports from XML .. 124

Parameterized Rule Repositories... 125

Rules Version Control ... 125

Rules Authoring and Maintenance Tools ... 126

Database Integration .. 128

External Rules ... 128

OpenRules® Projects .. 129

Pre-Requisites .. 129

Sample Projects .. 129

Main Configuration Project ... 130

Supporting Libraries ... 130

Predefined Types and Templates ... 131

Technical Support ... 131

OpenRules, Inc. OpenRules® User Manual

6

I NTRODUCTION

OpenRules® was developed in 2003 by OpenRules, Inc. as an open source

Business Rules Management S ystem (BRMS) and since then has become one of

the most popular BRMS on the market . Over these years OpenRules® has been

naturally transformed in a Business Decision Management System (BDMS) with

proven records of delivering and mai ntaining reliable decision support software.

OpenRules® is a winner of several software awards for innovation and is used

worldwide by multi -billion dollar corporations, major banks, insurers, health

care providers, government agencies, online stores, universities, and many other

institutions.

Brief History
From the very b eginning , OpenRules® was oriented to subject matter experts

(business analysts) allowing them to work in concert with software developers to

create, maintain , and efficiently execute business rules housed in enterprise -

class rules repositories. OpenRules® avoided the introduction of yet another òrule

languageó as well as another proprietary rules management GUI. Instead,

OpenRules® relied on commonly used tools such as MS Excel, Google Docs and

Eclipse integrated with the standard Java . This approach enabled OpenRules®

users to create and maintain inter -related decision tables directly in Excel .

Initially e ach rules table included several additional rows , in which a software

developer could place Java snippets to specify the exact semantics of rule

condit ions and actions.

In March of 2008, OpenRules® Release 5 introduced Rule Templates . Templates

allow ed a business analyst to create hu ndreds and thousands of business rules

based on a small number of templates supported by software developers. Rule

templates minimized the use of Java snippets and hid them from business users.

Rule templates were a significant step in minimizing rule rep ositories and

clearly separating the roles of business analysts and software specialists in

maintaining the rules.

In March of 2011 OpenRules® introduced Release 6, which finally moved control

over business logic to business users. OpenRules® 6 effectively remov ed any

Java coding from rules representation allow ing business analyst s themselves to

specify their decisions and supporting decision tables directly and completely in

Excel. Business users can also create business glossaries and test cases in Excel

table s. They may then test the accuracy of execute their decisions without the

need for any coding at all .

Once a decision has been tested it can be easily incorporated into any Java or

.NET environment . This process may involve IT specialists but only to integrat e

the business glossary with a specific business object model . The business logic

remains the complete prerogative of subject matter experts .

http://www.openrules.com/
http://www.openrules.com/ReleaseNotes_5.0.htm
http://www.openrules.com/RuleTemplates.htm
http://www.openrules.com/ReleaseNotes_6.0.htm

OpenRules, Inc. OpenRules® User Manual

7

OpenRules® Components

OpenRules® offers the following decision management components:

¶ Rule Repository for management of enterprise -level decision rules

¶ Rule Engine for execution of decisions and different business rules

¶ Rule Dialog for building rules -based Web questionnaires

¶ Rule Learner for rules discovery and predictive an alytics

¶ Rule Solver for solving constraint satisfaction and optimization problems

¶ Finite State Machines for event processing and òconnecting the dotsó.

Integration of these components with e xecutable decision s has effectively

converted OpenRules® from a BRMS to a BDMS, Business Decision

Management System, oriented to òdecision-centricó application development.

OpenRules, Inc . is a professional open source company that provide s software,

product documentation and technical support and other services that are highly

praised by our customers. You may start learning about product with the

document òGetting Started ó which describes how to i nstall OpenRules® and

includes simple examples. Then you may look at a more complex example in the

tutorial òCalculating Tax Return ó. This user manual covers the core OpenRules®

concepts in greater depth . Additional OpenRules® components are described in

separate user manuals : see Rule Learner , Rule Solver , and Rule Dialog .

Document Conventions

- The regular Century Schoolbook font is used for descriptive information .

- The italic Century Schoolbook font is used for notes and fragments

clarifying the text .

- The Courier New font i s used for code examples .

http://www.openrules.com/RuleRepository.htm
http://www.openrules.com/RuleEngine.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/StateMachines.htm
http://openrules.com/company.htm
http://openrules.com/services.htm
http://openrules.com/what_they_say.htm
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/ORD.htm

OpenRules, Inc. OpenRules® User Manual

8

CORE CONCEPTS

OpenRules® is a BDMS, Business Decision Management System, oriented to

òdecision-centricó application development. OpenRules® utilizes the well -

established spreadsheet concepts of workbooks, worksheets, and table s to build

enterprise -level rule repositories. Each OpenRules ® workbook is comprised of

one or more worksheets that can be used to separate information by types or

categories.

To create and edit rules and other tables presented in Excel -files you can use any

standard spreadsheet editor such as:

¶ MS ExcelÊ

¶ OpenOfficeÊ

¶ Google DocsÊ

Google DocsÊ is especially useful for collaborative rules management.

OpenRules® supports different types of spreadsheets that are defined by their

keywords. Here is the list o f OpenRules ® tables along with brief description of

each:

Table Type

(Keyword)
Comment

Decision

Defines a decision that may consist of multiple

sub-decisions associated with different decision

tables

DecisionTabl e or DT or

DecisionTableSingleHit or

RuleFamily

This is a single-hit decision table that uses

multiple conditions on different defined on

variables to reach conclusions about the

decision variables

Glossary

For each decision variable used in the decision

tables, the glossary defines related business

concepts, as well as related implementation

attributes and their possible domain

DecisionObject

Associates business concepts specified in the

glossary with concrete objects defined outside

the decision (i.e. as Java objects or Excel Data

OpenRules, Inc. OpenRules® User Manual

9

tables)

Rules

Defines a decision table that includes Java

snippets that specify custom logic for

conditions and actions. Read more. Some Rules

tables may refer to templates that hide those

Java snippets.

Datatype
Defines a new data type directly in Excel that

can be used for testing

Data Creates an array of test objects

Variable Creates one test object

Environment

This table defines the structure of a rules

repository by listing all included workbooks,

XML files, and Java packages

Method
Defines expressions using snippets of Java

code and known decision variables and objects

DecisionTable1 or DT1 or

DecisionTable Multi Hit

A multi-hit decision table that allows rule

overrides

Decision Table2 or DT2

A multi-hit decision table that like

DecisionTable2 executes all rules in top-down

order but results of the execution of previous

rules may affect the conditions of rules that

follow

Layout
A special table type used by OpenRules

®

Forms and OpenRules
®

Dialog

The following section will provide a detail ed description of these concepts.

SPREADSHEET ORGANIZATION AND M ANAGEMENT

OpenRules® uses Excel spreadsheets to represent and maintain business rules,

web form s, and other information that can be organized using a tabular format.

Excel is the best tool to handle different tables and is a popular and widely used

tool among business analysts.

Workbooks, Worksheets, and Tables

OpenRules® utilizes commonly used concepts of workbooks and worksheets.

These can be represented and maintained in multiple Excel files. Each

OpenRules® workbook is comprised of one or more worksheets that can be used

to separate information by categories. Each worksheet, in turn, is comprised of

one or more tables. Decision tables are the most typical OpenRules ® tables and

http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/pdf/OpenRulesDialog.pdf

OpenRules, Inc. OpenRules® User Manual

10

are used to represent business rules. Workbooks can include tables of different

types, each of which can support a different underlying logic.

How OpenRules® Tables Are Recognized

OpenRules® recognizes the tables inside Excel files using the following parsing

algorithm.

1. The OpenRules ® parser splits spreadsheets into òparsed tablesó. Each l ogical

table should be separated by at least one empty row or column at the start of

the table . Table parsing is performed from left to right and from top to

bottom. The first non -empty cell (i.e. cell with some text in it) that does not

belong to a previously parsed table becomes the top -left corner of a new

parsed table.

2. The parser determin es the width/height of the ta ble using non -empty cells as

it s clues. Merged cells are important and are considered as one cell. If the

top-left cell of a table starts with a predefined keyword (see the table below),

then such a table is parsed into an Open Rules® table.

3. All other "tables ," i.e. those that do not begin with a keyword are ignored and

may contain any information.

The list of all keywords was described above. OpenRules® can be extended with

more table types, each wi th their own keyword.

While not reflected in the table recognition algorithm, it is good practice to use a

black background with a white foreground for the very first row. All cells in this

row should be merged , so that the first row explicitly specifies t he table width.

We call this row the " table signature ". The text inside this row (consisting of

one or more merged cells) is the table signature that starts with a keyword. The

information after the keyword usually contains a unique table name and

additi onal information that depends on the table type.

If you want to put a table title before the signature row, use an empty row

between the title and the first row of the actual table. Do not forget to put an

OpenRules, Inc. OpenRules® User Manual

11

empty row after the last table row. Here are exam ples of some typical tables

recognized by OpenRules ®.

OpenRules® table with 3 columns and 2 rows:

Keyword <some text>

Something Something Something

Something Something Something

OpenRules® table with 3 columns and still 2 rows:

Keyword Something Something

Something Something Something

Something Something Something

OpenRules® table with 3 columns and 3 rows (empty initial cells are acceptable):

Keyword <some text>

Something Something

 Something Something

 Something

OpenRules® table with 3 columns and 2 rows (the empty 3rd row ends the table):

Keyword <some text>

Something Something Something

Something Something Something

Something Something Something

OpenRules® table with 2 columns and 2 rows (the empty cell in the 3rd column o f

the title row results in the 4th columns being ignored. This also points out the

importance of merging cells in the title row):

Keyword Something

Something

Something Something Something Something

Something Something Something Something

OpenRules® wil l not recognize this table (there is no empty row before the

signature row):

OpenRules, Inc. OpenRules® User Manual

12

Table Title

Keyword <some text>

Something Something

 Something Something

 Something

Fonts and coloring schema are a matter of the table designer's taste. The

designer h as at his/her disposal the entire presentation power of Excel (including

comments) to make the OpenRules ® tables more self -explanatory.

OpenRules® Rule T able Example

Here is an example of a worksheet with two rule s tables:

This workbook is comprised of three worksheets:

1. Worksheet "Decision Tables" - includes rule tables

2. Worksheet "Launcher" - includes a method that defines an order and

conditions under which rules will be executed

OpenRules, Inc. OpenRules® User Manual

13

3. Worksheet "Environment" - defines the structure of a rules repository by

listing all included workbooks, XML files, and Java packages (if any) .

The worksheet "Decision Tables" is comprised of two rule tables "defineGreeting"

and "defineSal utation". Rule tables are a traditional way to represent business

decision tables. Rule tables are decision tables that usually describe

combinations of conditions and actions that should be taken when all of the

conditions have been satisfied. In the ta ble "defineGreeting", the action "Set

Greeting" will be executed when an "hour," passed to this table as a parameter,

is between "Hour From" and "Hour To". In the table "defineSalutation", an action

"Set Salutation" will be executed when a customer's Gende r and Marital Status

correspond to the proper row.

These tables start with signature rows that are determined by a keyword in the

first cell of the table . A table signature in general has the following format:

Keyword return - type table - name(type1 par1, ty pe2 par2,..)

where table -name is a one-word function name and return -type, type1, and type

2 are types defined in the current OpenRules ® configuration . For example , type

may be any basic Java type such as int, double, Date, or Strin g.

The rule tables above are recognized by the keyword " Rules". All of the columns

have been merged into a single cell in the signature rows. Merging cells B3, C3,

and D3 specifies that table "defineGreeting" has 3 columns. A table includes all

those rows under its signature tha t contain non empty cells: in the example

above, an empty row 12 indicates the end of the table "defineGreeting".

Limitation . Avoid merging rule rows in the very first column (or in the very first

row for horizontal tables) - it may lead to invalid logic.

Business and Technical Views

OpenRules® tables such as òRulesó and òDataó may have two views:

[1] Business View

OpenRules, Inc. OpenRules® User Manual

14

[2] Technical View

These two views are implemented using Excel's outline buttons [1] and [2] at the

top left corner of every worksheet - see the figure below. This figure represents a

business view - no technical details about the implementation are provided. For

example, from this view it is hard to tell for sure what greeting will be generated

at 11 o'clock: "Good Morning" or "Good Afternoon"? I f you push the Technical

View button [2] (or the button " +" on the left), you will see the hidden rows with

the technical details of this rules table:

The technic al view opens hidden rows 4 -6 that contain the implementation

details. In particular, you can see that both "Hour From" and "Hour To" are

included in the definition of the time intervals. Different types of tables have

different technical views.

Note. Usin g Rules Templates you may completely split business and technical

information between different Excel tables. Decisions do not use technical views

at all because they do not require any coding and rely on predefined templa tes.

DECISION M ODELING AND EXECUTION

OpenRules® methodological approach allows business analysts to develop their

executable decisions with underlying decision tables without (or only with a

limited) help from software developers. You may become familiar with the major

OpenRules, Inc. OpenRules® User Manual

15

decision modeling concepts from simple examples provided in the document

òGetting Started ó and several associated tutorials . First we will consider the

simple implementation options for decision modeling, and later on we will

describe more advanced OpenRules® concepts.

Starting with Decision

From the OpenRules® perspective a decision contains:

- a set of decision variables that can take specific values from domains of

values

- a set of decision rules (frequently expressed as decision tables) that

specify relationships between decision variables.

Some decision variables are known (decision input) and some of them are

unknown (decision output). A decision may consist of other decisions (sub -

decisions). To execute a decision means to assign values to unknown decision

variables in such a way that satisfies the decision rules. This approach

corresponds to the oncoming OMG standard known as òDMNó.

 OpenRules® applies a top-down approach to decision modeling . This means that

we usually start with the definition of a Decision and not with rules or data.

Only then we will define decision tables , a glossary, and then data. Here is an

example of a Decision:

Here the decision òDeterminePatientTherapyó consists of four sub-decisions:

http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Decision1040EZ.pdf
http://www.linkedin.com/redirect?url=http%3A%2F%2Fwww%2Eomg%2Eorg%2Fcgi-bin%2Fdoc%3Fbmi%2F2011-3-4&urlhash=xleh&_t=tracking_anet

OpenRules, Inc. OpenRules® User Manual

16

¶ òDefine Medicationó that is implemented using a decision table

òDefineMedicationó

¶ òDefine Creatinine Clearanceó that is implemented using a decision table

òDefineCreatinineClearanceó

¶ òDefine Dosingó that is implemented using a decision table

òDefineDosingó

¶ òCheck Drug Interactionó that is implemented using a decision table

òWarnAboutDrugInteractionó.

The table òDecisionó has two columns òDecisionsó and òExecute Decision Tablesó

(those are not keywords and you can use any other titles for these columns) . The

first column contains the names of all our sub -decisions - here we can use any

combinations of words as decision names. The second column contains exact

names of decision table s that implement these sub -decisions. The decision table

names cannot contain spaces or special characters (except for òunderscoreó) and

they should always be preceded by ò:=ó, which indicates the decision table s will

actually be executed by the OpenRules ® engine.

OpenRules® allows you to use multiple (embedded) tables of the type òDecisionó

to define more complex decisions. For example, a top -level decision , that defines

the main decision variable, may be defined through several sub -decisions about

related variable s:

 Decision DecisionMain

 Decisions Execute Rules / Sub-Decisions

Define Variable 1 := DecisionTableVariable1()

Define Variable 2 := DecisionTableVariable21()

Define Variable 2 := DecisionTableVariable22()

Define Variable 3 := DecisionVariable3(decision)

Define Variable 4 := DecisionTableVariable4()

In order to Define Variable 2 it is necessary to execute two decision table s. Some

decisions, like "Define Variable 3", may require their own separate sub-decisions

such as described in the following table:

OpenRules, Inc. OpenRules® User Manual

17

 Decision DecisionVariable3

Decisions Execute Rules

Define Variable 3.1 := DecisionTableVariable31()

Define Variable 3.2 := DecisionTableVariable32()

Define Variable 3.3 := DecisionTableVariable33()

These tables can be kept in different files and can be cons idered as bui lding

blocks for your decision s. This top -down approach with Decision Table s and

dependencies between them allows you to represent even quite complex decision

logic in an intuitive, easy to understand way.

Some decisions may have a more complex structure than the just described

sequence of sub-decisions. You can even use conditions inside decision tables. For

example, consider a situation when the first sub -decision validates your data and

a second sub-decision executes complex calculations b ut only if the preceding

validation was successful. Here is an example of such a decision from the tax

calculation tutorial :

Since this table òDecision Apply1040EZó uses an optional column òConditionó, we

have to add a second row. The keywords òConditionó, òActionPrintó, and

òActionExecuteó are defined in the standard OpenRules® template

òDecisionTemplateó ð see the configuration file òDecisionTemplates.xlsó in the

folder òopenrules.configó. This table uses a decision variable ò1040EZ Eligible ó

that is defined by the first (unconditional) sub -decision òValidateó. We assume

that the decision òValidateTaxReturnó should set this decision variable to TRUE

or FALSE. Then the second sub-decision òCalculateó will be executed only when

http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRules® User Manual

18

ò1040EZ Eligibleó is TRUE. When it is FALSE, this decision , òApply1040EZó,

will simply print òDo Not Calculateó. In our example the reason will be printed

by the decision table òValidateTaxReturnó.

Note. You may use many conditions of the type òConditionó defined on different

decision variable s. Similarly, you may use an optional condition òConditionAnyó

which instead of decision variable s can use any formulas defined on any known

objects. It is al so possible to add custom actions using an optional action

òActionAnyó ð see òDecisionTemplates.xlsó in the folder òopenrules.configó.

When you have completed defini ng all decision and sub -decisions, you may define

decision table s.

Defining Decision Table s

OpenRules® decision modeling approach utilizes the classical decision tables that

were in the heart of OpenRules ® BDMS from its introduction in 2003 .

OpenRules® uses the keyword òRule só to represent different types of classical

decision tables. Rules t ables rely on Java snippets to specify execution logic of

multiple conditions and actions. In 2011 OpenRules ® version 6 introduced a

special type of decision tables with the keyword òDecisionTable ó (or òDTó) that

do not need Java snippets and rely on the p redefined business logic for its

conditions and conclusions defined on already known decision variable s. For

example, letõs consider a very simple decision òDetermineCustomerGreeting ó:

Decision DetermineCustomerGreeting

Decisions Execute Rules

Define Greeting Word := DefineGreeting()

Define Salutation Word := DefineSalutation()

It refers to two decision table s. Here is an example of the first decision table :

OpenRules, Inc. OpenRules® User Manual

19

DecisionTable DefineGreeting

Condition Condition Conclusion

Current Hour Current Hour Greeting

>= 0 <= 11 Is Good Morning

>= 11 <= 17 Is Good Afternoon

>= 17 <= 22 Is Good Evening

>= 22 <= 24 Is Good Night

Its first row contains a keyword òDecisionTableó and a unique name (no spaces

allowed). The second row uses keyword s òConditionó and òConclusionó to specify

the types of the decision table columns. The third row contains decision variable s

expressed in plain English (spaces are allowed but the variable names should be

unique).

The columns of a decision table define conditions and con clusions using different

operators and operands appropriate to the decision variable specified in the

column headings. The rows of a decision table specify multiple rules. For

instance, in the above decision table òDefineGreetingó the second rule can be

read as:

ñIF Current Hour is more than or equal to 11 AND Current Hour is less

than or equal to 17 THEN Greeting is Good Afternoonò.

Similarly, we may define the second decision table òDefineSalutationó that

determines a salutation word (it uses the keywor d òDTó that is a synonym for

òDecisionTableó):

DT DefineSalutation

Condition Condition Conclusion

Gender Marital Status Salutation

Is Male Is Mr.

Is Female Is Married Is Mrs.

Is Female Is Single Is Ms.

OpenRules, Inc. OpenRules® User Manual

20

If some cells in the rule conditions are em pty, it is assumed that this condition is

satisfied. A decision table may have no conditions but it always should contain

at least one conclusion.

Decision Table Execution Logic

OpenRules® executes all rules within DecisionTable in a top-down order. When

all conditions inside one rule (row) are satisfied the proper conclusion(s) from the

same row will be executed, and all other rules will be ignored.

Note. OpenRules ® decision tables can be used to implement a methodological

approach described in the book òThe Decision Model ó. It relie s on a special type

of decision tables called òRule Familiesó that require that the order of rules

inside a decision table should not matter. It means that to comply with the

Decision Model principles, you should not rely on the default top-down rules

execution order of OpenRules® decision tables. Instead, you should design your

decision table (you even may use the keyword òRuleFamilyó instead of òDTó) in

such a way that all rules are mutually exclusive and cover all possible

combinations of conditions. The advantage of this approach is that when you

decide to add new rules to your rule family you may place them in any ro ws

without jeopardizing the execution logic. However, i n some cases, this approach

may lead to much more complex organization of rule families to compare with

the standard decision tables .

AND/OR Conditions

The conditions in a decision table are always c onnected by a logical operator

òANDó. When you need to use òORó, you may add another rule (row) that is an

alternative to the previous rule(s). However, some conditions may have a

decision variable defined as an array, and within such array -conditions òORsó

are allowed . Consider for example the following , more complex decision table :

http://www.kpiusa.com/index.php?option=com_content&view=article&id=22&Itemid=8

OpenRules, Inc. OpenRules® User Manual

21

Here the decision variable s òCustomer Profileó, òCustomer Productó, and

òOffered Productsó are array s of strings . In this case, the second rule can be read

as:

IF Customer Profile Is One Of New or Bronze or Silver

AND Customer Products Include Checking Account and

Overdraft Protection

AND Customer Products Do Not Include CD with 25 basis point

increase, Money Market Mutual Fund, and Credit Card

THEN Offer ed Products ARE CD with 25 basis point increase,

Money Market Mutual Fund, and Credit Card

Decision Table Operators

OpenRules® supports multiple ways to define operators within decision table

conditions and conclusions. When you use a text form of operato rs you can freely

use upper and lower cases and spaces. The following operators can be used inside

decision table conditions:

Operator Synonyms Comment

Is =, ==

When you use ñ=ò or ñ==ò

inside Excel writeòô=ò oròô==ò

to avoid confusion with

Excelôs own formulas

Is Not
!=, isnot, Is Not Equal To, Not, Not

Equal., Not Equal To
Defines an inequality operator

>
Is More, More, Is More Than, Is

Greater, Greater, Is Greater Than

For integers and real numbers,

and Dates

OpenRules, Inc. OpenRules® User Manual

22

>=

Is More Or Equal. Is More Or Equal

To, Is More Than Or Equal To, Is

Greater Or Equal To, Is Greater Than

Or Equal To

For integers and real numbers,

and Dates

<=

Is Less Or Equal, Is Less Than Or

Equal To, Is Less Than Or Equal To, Is

Smaller Or Equal To, Is Smaller Than

Or Equal To, Is Smaller Than Or Equal

To,

For integers and real numbers,

and Dates

<
Is Less, Less, Is Less Than, Is Smaller,

Smaller, Is Smaller Than

For integers and real numbers,

and Dates

Is True For booleans

Is False For booleans

Is Empty

A string is considered ñemptyò

if it is either ñnullò or contains

only zero or more whitespaces

Contains Contain

For strings only, e.g. ñHouseò

contains ñuseò. The

comparison is not case-

sensitive

Starts

With
Start with, Start

For strings only, e.g. ñHouseò

starts with ñhoò. The

comparison is not case-

sensitive

Match Matches, Is Like, Like
Compares if the string matches

a regular expression

No

Match

NotMatch, Does Not Match, Not Like,

Is Not Like, Different, Different From

Compares if a string does not

match a regular expression

Within Inside, Inside Interval, Interval

For integers and real numbers.

The interval can be defined as:

[0;9], (1;20], 5ï10, between 5

and 10, more than 5 and less or

equals 10 ï see more

Is One Of
Is One, Is One of Many, Is Among,

Among

For integer and real numbers,

and for strings. Checks if a

value is among elements of the

domain of values listed

through comma

Is Not

One Of
Is not among, Not among

For integer and real numbers,

and for strings. Checks if a

value is NOT among elements

of the domain of values listed

through comma

Include Include All

To compare two arrays.

Returns true when the first

array (decision variable)

include all elements of the

second array (value within

decision table cell)

OpenRules, Inc. OpenRules® User Manual

23

Exclude Do Not Include, Exclude One Of
To compare an array or value

with an array

Does Not

Include
Include Not All

To compare two arrays.

Returns true when the first

array (decision variable) does

not include all elements of the

second array (value within

decision table cell)

Intersect Intersect With, Intersects
To compare an array with an

array

If the decision variable s do not have an expected type for a particular operator,

the proper syntax error will be diagnosed.

The following operat ors can be used inside decision table conclusions:

Operator Synonyms Comment

Is =, ==

Assigns one value to the conclusion

decision variable. When you use ñ=ò or

ñ==ò inside Excel writeòô=ò oròô==ò to

avoid confusion with Excelôs own

formulas.

Are

Assigns one or more values listed

through commas to the conclusion

variable that is expected to be an array

Add

Adds one or more values listed through

commas to the conclusion variable that is

expected to be an array

Assign

Plus
+=

Takes the conclusion decision variable,

adds to it a value from the rule cell, and

saves the result in the same decision

variable.

Assign

Minus
-=

Takes the conclusion decision variable,

subtracts from it a value from the rule

cell, and saves the result in the same

decision variable.

Assign

Multiply
*=

Takes the conclusion decision variable,

multiplies it by a value from the rule cell,

and saves the result in the same decision

variable.

Assign

Divide
/=

Takes the conclusion decision variable,

divides it by a value from the rule cell,

and saves the result in the same decision

variable.

OpenRules, Inc. OpenRules® User Manual

24

Using Regular Expressions in Decision Table Conditions

OpenRules® allows you to use standard regular expressions . Operators "Match"

and "No Match" (and their synonyms from the above table) allow you to match

the content of your text decision variable s with custom patterns such as phone

number or Social Security Number (SSN) . Here is an example of a decision table

that validates SSN:

DecisionTable testSSN

Condition Message

SSN Message

No
Match

\d{3}-\d{2}-\d{4} Invalid SSN

Match \d{3}-\d{2}-\d{4} Valid SSN

The use of this decision table is described in the sample projec t

òDecisionHelloJavaó.

Conditions and Conclusions without Operators

Sometimes the creation of special columns for operators seems unnecessary ,

especially for the operator s òIsó and òWithinó. OpenRules® allows you to use a

simpler format as in this decision table :

DT DefineGreeting

If Then

Current
Hour

Greeting

0-11 Good Morning

11-17 Good Afternoon

17-22 Good Evening

22-24 Good Night

As you can see, instead of keywords òConditionó and òConclusionó we use the

keywords òIfó and òThenó respectively . While this decision table looks much

simpler in comparison with the functionally identical decision table defined

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRules® User Manual

25

above, we need to make an implicit assumption that the lower and upper bounds

for the intervals ò0-11ó, ò11-17ó, etc. are included.

Using Decision Variable Names i nside Decision Table Cells

When your decision table contains too many columns it may become too wide and

unmanageable. In practice large decision tables have many empty cells because

not all decision variables participate in all rule conditions even if the proper

columns are reserved or all rules. To make your decision table more compact,

OpenRules® allows you to move a variable name from the column title to the rule

cells. To do that, instead of the standard columnõs structure with two sub-

columns

you may use another column representation with 3 sub -columns:

This way you may replace a wide table with many condition columns like the one

below:

to a much more compact table that may look as follows:

OpenRules, Inc. OpenRules® User Manual

26

You simply replace a column of the type òConditionó to the one that has the

standard type òConditionVarOperValueó. Similarly, instead of a column of the

type òConclusionó you may use a column of the type òConclusionVarOperValueó

with 3 sub -columns that represent:

- Decision variable name

- Operator

- Value.

Using Formulas inside Decision Table s

OpenRules® allows you to use formulas in the rule cells instead of constants. The

formulas usua lly have the following format:

::= (expression)

where an òexpressionó can be written using standard Java expressions. Here is

an example:

This decision table has only one conclusion that simply calculates a value for the

decision var iable òAdjusted Gross Incomeó as a sum of values for the decision

variable s òWagesó, òTaxable Interestó, and òUnemployment Compensationó. This

example also demonstrate s how to gain access to different decision variable s ð

you may write getReal(òVARIABLE _NAMEó) for real decision variable s.

Similarly , you may use methods getInt(é), getBool(é), getDate(é), and

getString(é).

OpenRules, Inc. OpenRules® User Manual

27

You may also put your formula in a specially defined Method and then refer to

this method from the decision table ð observe how it is done in the following

example:

Here we defined a new method òtaxableIncome()ó that returns a real value using

the standard Java type òdoubleó. Then we used this method inside both

conditions and one conclusion of this decision table .

Note. Actually the formula format ::= (expression) is a shortcut for a more

standard OpenRules ® formula format := òó +(expression) that also can be used

inside decision table s.

Direct References to Decision Variables

You may want to refer to values of some decision variables inside cells for

different tables. To do that, you may simply put a dollar sign (ò$ó) in front

of the variable name. For example, in the following table

the conclusion -column contains references $Vendor and $Provide r to

the values of decision variables Vendor and Provider. The reference

$Vendor is similar to the formula : := getString(ñVendorò). You may

also use similar references inside arrays. For example, to express a

OpenRules, Inc. OpenRules® User Manual

28

condition that a Vendor should not be among pro viders, you may use the

operator òIs Not One Of ó with an array òABC, $Vendor, XYZ ó.

Defining Business Glossary

While defining decision table s, we freely introduced different decision variable s

assuming that they are somehow defined. The business glossa ry is a special

OpenRules® table that actually defines all decision variable s. The Glossary table

has the following structure:

Glossary glossary

Variable Business Concept Attribute Domain

The first column will simply list all of the decision variable s using exactly the

same names that were used inside the decision table s. The second column

associates different decision variable s with the business concepts to which they

belong. Usually you want to keep decision variable s that belong to the same

business concept together and merge all rows in the column òBusiness Conceptó

that share the same concept. Here is an example of a glossary from the standard

OpenRules® example òDecisionLoanó:

OpenRules, Inc. OpenRules® User Manual

29

All rows for the concepts such as òCustomeró and òRequestó are merged.

The third column òAttributeó contains òtechnicaló names of the decision variable s

ð these names will be used to connect our decision variable s with attributes of

objects used by the actual applications , for which a decision has been defined .

The application objects could be defined in Java, in Excel tables, in XML, etc.

The decision does not have to know about it: the only requirement is that the

attribute names should follow the usual naming convention for identifi ers in

languages like Java: it basically means no spaces allowed. The last column ,

òDomainó, is optional , but it can be useful to specify which values are allowed to

be used for different decision variable s. Decision variable domains can be

specified using the naming conventi on for the intervals and domain s described

below. The above glossary provides a few intuitive examples of such domains.

These domains can be used during the validation of a decision.

Defining Test Data

OpenRules, Inc. OpenRules® User Manual

30

OpenRules® provides a convenient way to define test data for decisions directly

in Excel without the necessity of writ ing any Java code. A non -technical user

can define all business concepts in th e Glossary table using Datatype tables. For

example, here is a Datatype table for the business concept òCustomeró defined

above:

The first column d efines the type of the attribute using standard Java types such

as òint ó, òdoubleó, òBooleanó, òString ó, or òDateó. The second column contains th e

same attribute names that were defined in the Glossary. To create an array of

objects of the type òCustomeró we may use a special òDataó table like the one

below:

This table is too wide (and difficult to read) , so we could actually transpose it to a

more convenient but equivalent format :

OpenRules, Inc. OpenRules® User Manual

31

Now, whenever we need to reference the first customer we can refer to him as

customers[0] . Similarly, i f you want to define a doubled monthly income for the

second custromer , òMary K. Brownó, you may simply write

::= (customers[1].monthlyIncome * 2)

You can find many additional details about data modeling in this section.

Connecting the Decisions with Business Objects

To tell OpenRules® that we w ant to associate the object customers[0] with our

business concept òCustomeró defined in the Glossary, we need to use a special

table òDecisionObjectó that may look as follows:

Here we also associate other business concepts namely Request and Internal

with the proper business objects ð see how they are defined in the standard

example òDecisionLoanó.

OpenRules, Inc. OpenRules® User Manual

32

The above table connects a decision with test data defined by business users

directly in Excel . This allow s the decision to be tested. Ho wever, after the

decision is tested, it will be integrated into a real application that may use

objects defined in Java, in XML, or in a database, etc. For example, if there are

instances of Java classes Customer and LoanRequest, they may be put in the

object òdecisionó that is used to execute the decision. In this case, the proper

table òdecisionObjectsó may look like:

It is important that D ecision does not òknowó about a particular object

implementation : the only requirement is that the attribute inside these objects

should have the same names as in the glossary.

Note. You cannot use the predefined function òdecision()ó within the table

òdecisionObjectsó because its content is be not defined yet. You need to use the

internal variable òdecisionó directly.

Decision Execution

OpenRules® provides a template for Java launchers that may be used to execute

differ ent decisions. There are OpenRules® API classes OpenRulesEngine and

Decision. Here is an example of a decision launcher for the sample project

òDecisionLoanó:

OpenRules, Inc. OpenRules® User Manual

33

Actually, it just creates an instance of the class Decision . It has only two

parameters:

1) a path to the main Excel file òDecision.xlsó

2) a name of the main Decision inside this Excel file.

When you execute this Java la uncher using the provided batch file òrun.bató or

execute it from your Eclipse IDE, it will produce output that may look like the

following :

*** Decision DetermineLoanPreQualificationResults ***

Decision has been i nitialized

Decision DetermineLoanPreQualificationResults: Calculate Internal

Variables

Conclusion: Total Debt Is 165600.0

Conclusion: Total Income Is 360000.0

Decision DetermineLoanPreQualificationResults: Validate Income

Conclusion: Income Validation Resu lt Is SUFFICIENT

Decision DetermineLoanPreQualificationResults: Debt Research

Conclusion: Debt Research Result Is Low

Decision DetermineLoanPreQualificationResults: Summarize

Conclusion: Loan Qualification Result Is NOT QUALIFIED

ADDITIONAL DEBT RESEARCH I S NEEDED from DetermineLoanQualificationResult

*** OpenRules made a decision ***

This output shows all sub -decisions and conclusion results for the corresponding

decision table s.

Decision Analysis

Decision Testing

OpenRules® provides an ability to create a test harness comprised of an

executable set of different test cases. It is important that the same people who

design rules (usually business analysts) are able to design tests for them.

OpenRules, Inc. OpenRules® User Manual

34

Usually they create test cases directly in Excel by specifying the ir own

data/object types and creat ing instances of test objects of these types. Read more

at the section Defining Test Data .

Decision Syntax Validation

OpenRules® allows you to validate your decision by checking that:

- there are no syntax error in the organization of all decision tables

- values inside decision variable cells correspond to the associated domains

defined in the glossary.

The validation template is described in the standard file

òDecisionTableValidate Templates.xls ó.

If you use the Eclipse Plugin, it will display é

OpenRules® also provides a special plugin for Eclipse IDE , a de-facto

standard project management tools for software developers within a Java -based

development environment. Eclipse is used for code editing, debugging, and

testing of rule projects within a single commonly known integrated development

environment. OpenRules® has been designed to catch as many errors as possible

in design -rime vs. run -time when it is too late. OpenRules® Plug in automatically

diagnoses errors in the Excel -files and displays the proper error messages inside

Eclipse views like at the picture below:

http://www.eclipse.org/

OpenRules, Inc. OpenRules® User Manual

35

Eclipse Plug in diagnoses any errors in Excel -files before you even deploy or run

your OpenRules -based application. To make sure that Eclipse control s your

OpenRules® project, you have first to right -click to your project folder and "Add

OpenRules Nature". You always can similarly "Remove OpenRules Nature". To

be validated, your main xls -files should be placed into an Eclipse source folder

while all included files should be kept in regular (non-source) folders.

OpenRules® Plugin displays a di agnostic log with possible errors inside the

Eclipse Console view. The error messages include hyperlinks that will open the

proper Excel file with a cursor located in a cell where the error occurred.

Decision Execution Reports

OpenRules® provides an abi lity to generate decision execution reports in the

HTML -format. To generate an execution report , you should add the following

setting to the decisionõs Java launcher :

decision.put("report " , "On");

OpenRules, Inc. OpenRules® User Manual

36

before calling decision.execute() . By default, execution re ports are not

generated as they are needed mainly for decision analysis . Reports are

regenerated for every decision run.

During decision execution, OpenRules® automatically creates a sub -directory

òreportó in your main project directory and generates a report inside this sub -

directory. For every decision table, including single -hit, multi -hit, and rule

sequencing tables, OpenRules® generates a separate html -file with the name

Report<n>.<DecisionTableName>.html , where n is an execution order

number for this particular decision table. For example, for the sample project

òDecisionLoanó OpenRules® will generate the following files:

The first file contains a list of links to all executed decision tables:

OpenRules, Inc. OpenRules® User Manual

37

Below are other g enerated files (one per decision table) with lists of rules (rows)

that were actually executed:

OpenRules, Inc. OpenRules® User Manual

38

These reports help a rule designer to analyze which rul es were actually executed

and in which order. The òExecuted Rule #ó corresponds to the sequential number

of a rule inside its decision table.

Note. Execution reports are intended to explain the behavior of certain decision

tables and are used mainly for a nalysis and not for production. If you turn on

report generation mode in a multi -threaded environment that shares the same

instance of OpenRulesEngine, the reports will be produced only for the first

thread.

Decision Tracing

OpenRules® relies on the stand ard Java logging facilities for the decision output.

They can be controlled by the s tandard file òlog4j.propertiesó that by default

looks like below:

log4j.rootLogger= INFO, stdout
log4j.appender.stdout= org.apache.log4j.ConsoleAppender
log4j.appender.stdout .layout= org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern= %m%n
#log4j.logger.org.openl=DEBUG

You may replace INFO to DEBUG and uncomment the last line to see OpenRules

debugging information. To redirect all logs into a file òresults.txt ó you may

change the file òlog4j.propertiesó as follows:

log4j.rootLogger=INFO, stdout
#log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout=org.apache.log4j.FileAppender
log4j.appender.stdout.File=results.txt
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4 j.appender.stdout.layout.ConversionPattern=%m%n
uncomment the next line to see OpenRules debug messages
#log4j.logger.org.openl=DEBUG

OpenRules, Inc. OpenRules® User Manual

39

You may control how òtalkativeó your decision is by setting decisionõs parameter

òTraceó. For example, if you add the following setting to the above Java launcher

decision.put("trace" , "Off");

just before calling decision.execute(), then your output will be much more

compact:

*** Decision Det ermineLoanPreQualificationResults ***

Decision DetermineLoanPreQualificationResults: Calculate Internal

Variables

Decision DetermineLoanPreQualificationResults: Validate Income

Decision DetermineLoanPreQualificationResults: Summarize

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult

*** OpenRules made a decision ***

You may also change output by modifying the tracing details inside the proper

decision templates in the configuration files òDecisionTemplates.xls ó and

òDecisionTableExecu teTemplates.xls ó.

Rules Repository Search

To analyze rules within one Excel files you may effectively use familiar Search

and Replace features provided by Excel or Google Docs.

When you want to search across multiple Excel files and folders , you may use a

free while powerful too l called òIceTeaReplaceró that can be very useful for doing

search & replace in OpenRules repositories. The following options are available:

¶ Perform search b efore replacing

¶ Match whole word only

¶ Ignore word case

¶ Do backup before replace

¶ Deselect files on which you donõt want to perform replace.

Here is an example of its graphical interface:

http://www.icetear.com/

OpenRules, Inc. OpenRules® User Manual

40

Consistency Checking

OpenRules® provides a special component Rule SolverÊ that along with powerful

optimization features allow a user to check consistency of the decision models

and find possible conflicts within decision tables and across multiple decision

tables. The detail description of the product can be found at

http://openrules.com/pdf/RulesSolver.UserManual.pdf .

ADVANCED DECISION TABLES

In real -world project you may need more complex representation s of rule sets

and the relationships between them than th ose allowed by the default decision

tables. OpenRules® allows you to use advanced decision tables and to define

your own rule sets with your own logic.

Specialized Conditions and Conclusions

The standard columns of the types òCondition ó and òConclusion ó always have

two sub-columns: one for operators and another for values. OpenRules® allows

you to specify columns of the types òIfó and òThen ó that do not require sub-

columns. Instead, they allow you to use operators or even natural language

expressions together with values to represent different intervals and domains of

http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.com/rulesolver.htm
http://openrules.com/pdf/RulesSolver.UserManual.pdf

OpenRules, Inc. OpenRules® User Manual

41

values. Read about different ways to represent intervals and domains in this

section below.

Sometimes your conditions or actions are no t related to a particular decision

variable and can be calculated using formulas. For example, a c ondition can be

defined based on combination of several decision variable s, and you would not

want to artificially add an intermediate decision variable to your glossary in

order to accommodate each needed combination of existing decision variable s. In

such a case, you may use a special type òConditionAny ó like in the example

below:

Here the word òConditionó does not represent any decision variable and instead

you may insert any text, i.e. òCompare Adjusted Gross Income with Dependent

Amountó. When your conclusion, does not set a value for a single decision

variable but rather does something that is expressed in the formulas within the

cells of this column, you should use a column of type òActionAny ó. It does not

have sub-columns because there is no need for an operator.

Note. There is also a column of type òAction ó that is equivalent to type òThenó.

Specialized Decision Table s

Sometimes the default behavior of a DecisionTable (as single-hit rules tables) is

not sufficient. OpenRules® provide two additional types of decision tables

DecisionTable 1 (or DT1) and DecisionTable 2 (or DT2). While we recommend

avoiding these types of decision table s, in certain situations they provide a

convenient way around the limitations imposed by the standard DecisionTable .

DecisionTable 1

OpenRules, Inc. OpenRules® User Manual

42

Contrary to the standard DecisionTable that is implemented as a single -hit rules

table , decision table s of type òDecisionTable1ó or òDecisionTableMultiHitó are

implemented as multi -hit decision tables. òDecisionTabl e1ó supports the

following rules execution logic:

1. All rules are eval uated and if their conditions are satisfied, they will be

marked as òto be executedó

2. All actions columns (of the types òConclusionó, òThenó, òActionó,

òActionAnyó, or òMessageó) for the òto be executedó rules will be executed

in top -down order.

Thus, we can make two important observations about the behavior of the

òDecisionTable1ó:

¶ Rule actions cannot affect the conditions of any other rules in the decision

table ð there will be no re -evaluation of any conditions

¶ Rule overrides are permitted. The action o f any executed rule may

override the action of any previously executed rule .

Letõs consider an example of a rule that states: òA person of age 17 or older is

eligible to drive. However, in Florida 16 year olds can also driveó. If we try to

present this r ule using the standard DecisionTable , it may look as follows:

Using a non -standard DecisionTable 1 we may present the same rule as:

OpenRules, Inc. OpenRules® User Manual

43

In the DecisionTable1 the first unconditional rule will set òDriving Eligibilityó to

òEligibleó. The second rule will reset it to òNot Eligibleó for all people younger

than 17. But for 16 year olds living in Florida, the third rule will override the

variable again to òEligibleó.

DecisionTable 2

There is one more type of decision table , òDecisionTable 2,ó that is similar to

òDecisionTable1ó but allows the actions of already executed rules to affect the

conditions of rules specified below them. òDecisionTable2ó supports the following

rules execution logic:

1. Rules are evaluated in top -down order and if a rule condition is satisfied,

then the rule actions are immediately executed.

2. Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Thus, we can make two important observations about the behavior of the

òDecisionTable 2ó:

¶ Rule actions can affect the conditions of other rules

¶ There could be rule overrides when rules defined below already executed

rules could override already executed actions.

Letõs consider the following example:

OpenRules, Inc. OpenRules® User Manual

44

Here the first (unconditional) rule will calculate and set the value of the decision

variable òTaxable Incomeó. The second rule will check if the calculated value is

less than 0. If it is true, this rule will reset this decision var iable to 0.

Business Rules Defined on Collections of Objects

Previously, when OpenRules ® users needed to run decisions against collections

(arrays) of business objects, they needed to use Java loops. This release adds

an ability to execute one decision a gainst a collection of objects and to calculate

values defined on the entire collection within single decision run .

Let's consider an example " DecisionManyCustomers " added to the standard

OpenRules® installation. There is a standard Java bean Customer wit h

different customer attributes such as name, age, gender, salary, etc. There is

also a Java class "CollectionOfCustomers":

public class CollectionOfCustomers {

Customer[] customers ;

int minSalary ;

int maxSalary ;

int numberOfRichCustomers ;

int totalSalary ;

...

}

We want to pass this collection to a decision that will process all customers

from this collection in one run and will calculate such attributes as

OpenRules, Inc. OpenRules® User Manual

45

"minSalary", "totalSalary", "numberOfRichCustomers", and similar attributes,

which are specified for the entire collection. Each customer within this

collection can be processed by the following rules:

Pay attention that we use here a multi -hit table (DecsionTable1), so both rules

will be executed. The first one unconditionally calculate the total. max, and

min salaries. The second rule defines a number of "rich" customers inside the

collection. To accumulate the proper values, we use the existing operator "+="

and newly introduced operators "Min" and "Max".

To execute the above decision table for all customers, we will utilize a new

action " ActionRulesOnArray " within the followin g decision table:

Here the first 3 actions (conclusions) simply define i nitial values of collection

attributes. The last action has 3 sub -columns:

- The name of the array of objects as it is defined in the glossary

("Customers")

- The type of those objects ("Customer")

- The name of the decision table ("EvaluateOneCustomer") that w ill be

used to processes each objects form this collection.

Thus, a combination of the two decisions tables (similar to the above ones)

provides business users with a quite intuitive way to apply rules over

collections of business objects without necessity to deal with programming

constructions.

OpenRules, Inc. OpenRules® User Manual

46

Decision Tables for Comparing Ranking Lists

In many real -world situations decisions are made based on comparison of

attributes that belong to different predefined lists of values while the values

inside these lists are ordered (ranked). For example, a business rule may

sound as follows:

"If Diagnostic Need is Stronger Than Sensitivity Level

 Then Document Access should be Allowed"

Here the Diagnostic Need could belong to the ranking list:

1. Immediately Life -Threatenin g

2. Life -Threatening

3. Acute

4. Chronic.

Similarly the Sensitivity Level could belong to this ranking list:

1. High

2. Mid

3. Low.

Newly defined custom templates allow us to present the relations between

these two ranking lists in the following decision table of the new t ype

"DecisionTableCompareRanks ":

Then the above rule may be expressed usi ng the following decision table of the

new type " DecisionTableRanking ":

OpenRules, Inc. OpenRules® User Manual

47

To define "Stronger/Weaker" relations between these ranks, this decision table

will automatically invoke the decision table with the dynamically defined

name "Compare<rank1>With<rank2> " (after removing all spaces).

The benefits of these new types of decision tables become clear when you think

about supporting hundreds of similar ranking lists. These tables may cover

complex relationships between multiple ranking lists and at the same time

they remain easy to understand and to be maintained by business users.

The complete working example " DecisionRankingLists " with the proper

custom templates (see file "RankTemplates.xls") is included into the standard

OpenRules® installation.

RULE TABLES

OpenRules® supports several ways to represent business rules inside Exc el

tables. Default decision table is the most popular way to present sets of related

business rules because they do not require any coding . However, there classical

decision tables can represent more complex execution logic that is frequently

custom for different conditions and actions.

Actually, standard DecisionTable is a special case of an OpenRules ® single -hit

decision table that is based on a predefined template (see below). Since 2003,

OpenRules® allows its users to configure different types of custom decision tables

directly in Excel. In spite of the necessity to use Java snippets to specify custom

logic, these tables are successfully used by major corporations in real -world

decision support applications. This chapter describes different decision tables

OpenRules, Inc. OpenRules® User Manual

48

that go beyond the default d ecision tables. It will also describe how to use simple

IF -THEN -ELSE statements within Excel -based tables of type "Method".

Simple Rule Table

Let's consider a simple set of HelloWorld rules that can be used to generate a

string like "Good Morning, World!" based on the actual time of the day. How one

understands such concepts as "morning", "afternoon", "evening", and "night" is

defined in this simple rules table:

Hopefully, this rule table is not much more difficult to compare with the default

DecisonTable. It states that if the current hour is between 0 and 11, the greeting

should be "Good Morning", etc. You may change Hour From or Hour To if you

want to customize the definition of "morning" or "evening". This table is also

oriented to a business user. However, its first row already includes some

technical information (a table signature):

 Rules void helloWorld(int hour)

Here " Rules " is an OpenRules® keyword for this type of tables . "helloWorld" is

the name of this particular rules table. It tells to an external program or to other

rules how to launch this rule s table. Actually, this is a typical description of a

programm ing method (its signature) that has one integer parameter and returns

nothing (the type "void"). The integer parameter "hour" is expected to contain the

current time of the day. While you can always hide this information from a

business user, it is an impo rtant specification of this rule table.

OpenRules, Inc. OpenRules® User Manual

49

You may ask: where is the implementation logic for this rule table? All rule

tables include additional hidden rows (frequently password protected) that you

can see if you click on the buttons "+" to open the Technical View below:

This part of the rule table is oriented to a technical user, who is not expected to

be a programming guru but rather a person with a basic knowledge of the "C"

family of languages which includes Java. Let's walk through these rows step by

step:

- Row "Condition and Action Headers" (see row 4 in the table above) . The

initial columns with conditions should start with the letter "C" , for example

"C1", "Cond ition 1". The columns with actions should start with the letter

"A", for example "A1", "Action 1".

- Row "Code" (see row 5 in the table above) . The cells in this row specify the

semantics of the condition or action associated with the corresponding

columns. For example, the cell B5 contains the code min <= hour . This

means that condition C1 will be true whenever the value for min in any cell

in the column below in this row is less than or equals to the parameter hour .

If hour is 15, then the C1 -conditio ns from rows 8 and 9 will be satisfied.

The code in the Action -columns defines what should be done when all

conditions are satisfied. For example, cell D5 contains the code:

OpenRules, Inc. OpenRules® User Manual

50

 System.out.println(greeting + ", World!")

This code will print a str ing composed of the variable greeting and ", World!" ,

where greeting will be chosen from a row where all of the conditions are

satisfied. Again, if hour is 15, then both conditions C1 and C2 will be

satisfied only for row 9 (because 9 <= 15 <= 17). As a result, the words "Good

Afternoon, World!" will be printed. If the rule table does not contain a row

where all conditions have been satisfied, then no actions will be executed.

Such a situation can be diagnosed automatically.

- Row "Parameters" (see row 6 in the table above) . The cells in this row specify

the types and names of the parameter s used in the previous row.

- Row "Display Values" (see row 7 in the table above) . The cells in this row

contain a natural language description of the column content.

The same table can be defined a little bit differently using one condition code for

both columns "min" and "max":

How Rule Tables Are Organized

As you have seen in the previous section, rule tables have the following

structure:

Row 1: Signature

Rules void tableName(Type1 par1, Type2 par2, ..) - Multi -Hit Rule Table

OpenRules, Inc. OpenRules® User Manual

51

Rules <JavaClass> tableName(Type1 par1, Type2 par2, ..) - Single -Hit Rule

Table

Row 2 : Condition/Action Indicators

The condition column indicator is a word starting with òCó.

The action column indicator is a word starting with òAó.

All other starting characters are ignored and the whole column is considered

as a comment

Row 3 : Code

The cells in each colum n (or merged cells for several columns) contain Java

Snippets.

Condition codes should contain expressions that return Boolean values.

If an action code contains any correct Java snippet, the return type is

irrelevant.

Row 4 : Parameters

Each condition/acti on may have from 0 to N parameters. Usually there is

only one parameter description and it consists of two words:

 parameterType parameterName

Example : int min

parameterName is a standard one word name that corresponds to Java

identification rules.

parameterType can be represented using the following Java types:

- Basic Java types: boolean, char, int, long, double,

String, Date

- Standard Java classes: java.lang.Boolean,

java.lang.Integer, java.lang.Long, java.lang.Double,

java.lang.Character, java.lang. String, java.util.Date

- Any custom Java class with a public constructor that has a String

parameter

- One-dimensional arrays of the above types.

OpenRules, Inc. OpenRules® User Manual

52

Multiple parameters can be used in the situations when one code is used for

several columns. See the standard exa mple òLoan1.xlsó.

Row 5 : Columns Display Values

Text is used to give the column a definition that would be meaningful to

another reader (there are no restrictions on what text may be used).

Row 6 and below : Rules with concrete values in cells

Text cells in these rows usually contain literals that correspond to the

parameter types.

For Boolean parameters you may enter the values "TRUE" or "FALSE" (or

equally "Yes" or "No") without quotations.

Cells with Dates can be specified using java.util.Date . OpenRul es® uses

java.text.DateFormat.SHORT to convert a text defined inside a cell into

java.util.Date . Before OpenRules ® 4.1 we recommended our

customers not to use Excel's Date format and define Date fields in Excel as

Text fields. The reason was the notoriou s Excel problem inherited from a

wrong assumption that 1900 was a leap year. As a result, a date entered in

Excel as 02/15/2004 could be interpreted by OpenRules ® as 02/16/2004.

Starting with release 4.1 OpenRules ® correctly interprets both Date and Text

Excel Date formats.

Valid Java expression (Java snippets) may be put inside table cells by one

of two ways:

- by surrounding the expression in curly brackets, for example: {

driver.a ge+1; }

- by putting ":=" in front of your Java expression, for example:

:=driver.age+1

Make sure that the expression's type corresponds to the parameter

type.

http://support.microsoft.com/kb/214326/en-us

OpenRules, Inc. OpenRules® User Manual

53

Empty cells inside rules means "whatever" and the proper condition is

automatically considered sat isfied. An action with an empty value will be

ignored. If the parameter has type String and you want to enter a space

character, you must explicitly enter one of the following expressions:

:= " "

'= " "

{ " "; }

Note. Excel is always trying to "guess" the type of text is inside its cells and

automatically converts the internal representation to something that may not be

exactly what you see. F or example, Excel may use a scientific format for certain

numbers. To avoid a "strange" behavior try to explicit ly define the format "text"

for the proper Excel cells.

Separating Business and Technical Information

During rules harvesting, business specialists initially create rule tables using

regular Excel tables. They put a table name in the first row and column n ames in

the second row. They start with Conditions columns and end with Action

columns. For example, they can create a table with 5 columns [C1,C2,C3,A1,A2]

assuming the following logic:

 IF conditions C1 and C2 and C3 are satisfied

 THEN execut e actions A1 and A2

Then, a business specialist provides content for concrete rules in the rows below

the title rows.

As an example, let's consider the rule table "defineSalutation" with the rules that

define how to greet a customer (Mr., Ms, or Mrs.) base d on his/her gender and

marital status. Here is the initial business view (it is not yet syntactically

correct):

OpenRules, Inc. OpenRules® User Manual

54

A business analyst has initially created only fi ve rows:

- A signature "Rules defineSalutation" (it is not a real signature yet)

- A row with column titles: two conditions "Gender", "Marital Status" and one

action "Set Salutation"

- Rows with three rules that can be read as:

1) IF Gender is ñMaleò THEN Set Salutation ñMr."

2) IF Gender is ñFemaleò and Marital Status is ñMarriedò THEN Set Salutation ñMrs.ò

3) IF Gender is ñFemaleò and Marital Status is ñSingleò THEN Set Salutation ñMs.ò

While business specialists continue to define such rule tables, at some point a

technical specialist should take over and add to these tables the actual

implementation. The technical specialist (familiar with the software

environment into which these rules are going to be embedded) talks to the

business specialist (author of the rule table) about how the rules should be used.

In the case of the "defineSalutation" rule table, they agree that the table will be

used to generate a salutation to a customer. So, the technical specialist decides

that the table will have two parameters:

1) a customer of the type Customer

2) a response of the type Response

The technical specialist will modify the signature row of the table to look like

this:

Rules void defineSalutation(Customer customer, Response response)

Then she/he inserts three more rows just aft er the first (signature) row:

OpenRules, Inc. OpenRules® User Manual

55

- Row 2 with Condition/Action indicators

- Row 3 with Condition/Action implementation

- Row 4 with the type and name of the parameters entered in the proper column.

Here is a complete implementation of this rule table:

The rules implementer will decide that to support this rule table , type Customer

should have at least two attributes , "gender" and "maritalStatus", and the type

Response should be able somehow to save different pairs (names,value)

like ("salutation","Mr.") . Knowing the development environment, s/he will decide

on the types of attributes. Let's assume that both types Customer and Response

correspond to Java classes, and the attri butes have the basic Java type of String.

In this case, the column "Gender" will be marked with a parameter "String

gender" and the condition will be implemented as a simple boolean expression:

 customer.gender.equals(gender)

The second column "C2" is implemented similarly with a String attribute and a

parameter maritalStatus. Finally (to make it a little bit more complicated) , we

will assume that the class Response contains an attribute map of the predefined

Java type HashMap, in which we can pu t/get pairs of Strings. So, the

implementation of the action "Set Salutation" will look like:

 response.map.put("salutation",salutation)

OpenRules, Inc. OpenRules® User Manual

56

How Rule Tables Are Executed

The rules inside rule tables are executed one-by-one in the order they are plac ed

in the table. The execution logic of one rule (row in the vertical table) is the

following:

 I F ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false) , all

other condition s in the same rule (row) are ignored and are not evaluated. The

absence of a parameter in a condition cell means the condition is always

true. Actions are evaluated only if all conditions in the same row are evaluated

to be true and the action has non -empty parameters. Action columns with no

parameters are ignored.

For the default vertical rule tables, all rules are executed in top -down order.

There could be situations when all conditions in two or more rules (rows) are

satisfied. In that case, the actio ns of all rules (rows) will be executed, and the

actions in the rows below can override the actions of the rows above.

For horizontal rule tables, all rules (columns) are executed in left -to-right order.

Relationships between Rules inside Rule Tables

OpenRules® does not assume any implicit ("magic") execution logic , and executes

rules in the order specified by the rule designer. All rules are executed one -by-

one in the order they are placed in the rule table. There is a simple rule that

governs rules execution inside a rules table:

The preceding rules are evaluated and executed first!

OpenRules® supports the following types of rule tables that offer different

execution logic to satisfy different practical needs:

- Multi -hit rule tables

- Single -hit rule tables

- Rule Sequences.

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

57

Multi -Hit Rule Tables

A multi -hit rule table evaluates conditions in ALL rows before any action is

executed. Thus, actions are executed only AFTER all conditions for all rules

have already been evaluated. From this point of view, the execution logic is

different from traditional programming if -then logic. Let us consider a simple

example. We want to write a program "swap" that will do the f ollowing:

 If x is equal to 1 then make x to be equal to 2.

 If x is equal to 2 then make x to be equal to 1.

Suppose you decided to write a Java method assuming that there is a class App

with an integer variable x. The code may (but should not) look like this:

 void swapX(App app) {

 if (app.x == 1) app.x = 2;

 if (app.x == 2) app.x = 1;

 }

Obviously, this method will produce an incorrect result because of the missing

"else". This is òobviousó to a software developer, but may not be at all obvious to

a business analyst. However, in a properly formatted rule table the following

representation would be a completely legitimate:

It will also match ou r plain English description above. Here is the same table

with an extended technical view:

OpenRules, Inc. OpenRules® User Manual

58

Rules Overrides in Multi -Hit Rule Tables

There could be situations when all condit ions in two or more rules (rows) are

satisfied at the same time (multiple hits). In that case, the actions of all rules

(rows) will be executed, but the actions in the rows below can override the

actions of the rows above. This approach also allows a des igner to specify a very

natural requirement:

 More specific rules should override more generic rules!

The only thing a desig ner needs to guarantee is that "more specific" rules are

placed in the same rule table after "more generic" rule s. For examp le, you may

want to execute Action -1 every time that Condition -1 and Condition -2 are

satisfied. However, if additionally, Condition -3 is also satisfied, you want to

execute Action -2. To do this , you could arrange your rule table in the following

way:

Condition -1 Condition -2 Condition -3 Action -1 Action -2

X X

X

X X X

X

In this table the second rule may override the first one (as you might naturally

expect).

OpenRules, Inc. OpenRules® User Manual

59

Let's consider the execution logic of the following multi -hit rule table that define s

a salut ation "Mr.", "Mrs.", or "Ms." based on a customer's gender and marital

status:

Rules void defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

If a customer is a m arried female , the conditions of the second rules are satisfied

and the salutation "Mrs." will be selected. This is only a business view of the

rules table. The complete view including the hidden implementation details

("Java snippets") is presented below:

Rules void defineSalutation(Customer customer, Response response)

C1 C2 A1

customer.gender.
equals(gender)

customer.maritalStatus.
equals(status)

response.map.put("salutation",s
alutation);

String gender String status String salutation

Gender Marital Status Set Salutation

Male

Mr.

Female Married Mrs.

Female Single Ms.

The OpenRulesEngine will execute rules (all 3 "white" rows) one after another.

For each row if conditions C1 and C2 are satisfied then the action A1 will be

executed with the selected "salutation". We may add one more rule at the very

end of this table:

Rules void defineSalutation(Customer customer, Response
response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

OpenRules, Inc. OpenRules® User Manual

60

In this case, after executing the second rule OpenRules ® will also execute the

new, 4th rule and will override a salutation "Mrs." with "???". Obviously this is

not a desirable result. However, sometimes it may have a positive effect by

avoiding undefined values in cases w hen the previous rules did not cover all

possible situations. What if our customer is a Divorced Female?! How can this

multi -hit effect be avoided? What if we want to produce "???" only when no o ther

rules have been satisfied?

Single -Hit Rule Tables

To achieve this you may use a so-called "single -hit " rule table , which is specified

by putting any return type except "void " after the keyword " Rules ". The

following is an example of a single -hit rule table that will do exactly what we

need:

Rules String defineSalutation(Customer customer, Response
response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

Another positive effect of such "single -hitness" may be observed in connection

with large tables with sa y 1000 rows. I f OpenRules ® obtains a hit on rule #10 it

would not bother to check the validity of the remaining 990 rules.

Having rule tables with a return value may also simplify your interface. For

example, we do not really need the special object Respo nse which we used to

write our defined salutation. Our simplified rule table produces a salutation

without an additional special object:

OpenRules, Inc. OpenRules® User Manual

61

Rules String defineSalutation(Customer customer)

C1 C2 A1

customer.gender.
equals(gender)

customer.maritalStatus
.equals(status)

return salutation;

String gender String status String salutation

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

Please note that the last action in this table should return a value that ha s the

same type as the entire single -hit table. The single -hit table may return any

standard or custom Java class such as String or Customer. Instead of basic Java

types such as "int" you should use the proper Java classes such as Integer in the

table si gnature.

Here is an example of Java code that creates an OpenRulesEngine and executes

the latest rules table "defineSalutation":

public static void main(String[] args) {

 String fileName = "file:rules/main/HelloCustomer.xls";

 OpenRulesEngine engine =

 new OpenRulesEngine(fileName);

 Customer customer = new Customer();

 customer.setName("Robinson");

 customer.setGender("Female");

 customer.setMaritalStatus("Married");

 String salutation =

 (String) engine.r un("defineSalutation", customer);

 System.out.println(salutation);

}

Rule Sequences

There is one more type of rule tables called òRule Sequenceó that is used mainly

internally within templates. Rule Sequence can be considered as a multi -hit rule

tabl e with only one difference in the execution logic , conditions are not evaluated

before execution of the actions. So, all rules will be executed in top -down order

with possible rules overrides . Rule actions are permitted to affect the conditions

of any rule s that follow the action . The keyword òRules ó should be replaced with

OpenRules, Inc. OpenRules® User Manual

62

another keyword òRuleSequence ó. Letõs get back to our òswapXó example. The

following multi -hit table will correctly solve this problem :

However, a similar rule sequ ence

will fail because when x is equal to 1, the first rule will make it 2, and

then the second rules will make it 1 again.

Relationships a mong Rule Tables

In most practical cases , business rules are not located in one file or in a sin gle

rule set, but rather are represented as a hierarchy of inter -related rule tables

located in different files and directories - see Business Rules Repository .

Frequently, the main Excel -file contains a main method that specifies the

execution logic of multiple decision tables. You may use the table òDecisionó for

the same purposes. In many cases, the rule engine can execute decision table s

directly from a Java program ð see API .

OpenRules, Inc. OpenRules® User Manual

63

Because OpenRules® interprets rule tables as regular methods, designers of rules

frequently create special "processing flow" decision tables to specify the

conditions under which different rules should be executed. See examples of

processing flow rules in such sample projects as Loan2 and LoanDynamics.

Simple AND / OR Conditions in Rule Tables

All conditions inside the same row (rule) are considered from left to right using

the AND logic. For example, to express

 if (A> 5 && B >10) {do something}

you may use the rule table:

Rules void testAND(int a, int b)

C1 C2 A1

a > 5 b>10 System.out.println(text)

String x String x String text

A > 5 B > 10 Do

X X Something

To express the OR logic

 if (A> 5 || B > 10) {do something}

you may use the rules table:

Rules void testOR(int a, int b)

C1 C2 A1

a > 5 b>10 System.out.println(text)

String x String x String text

A > 5 B > 10 Do

X
Something

 X

Sometimes instead of creating a decision table it is more convenient to represent

rules using simple Java expressions inside Method tables. For example, the

above rules table may be easily represented as the following Method table:

OpenRules, Inc. OpenRules® User Manual

64

Method void testOR(int a, int b)

 if (a > 5 || b>10) System.out.println("Something");

Horizontal and Vertical Rule Tables

Rule tables can be created in one of two possible formats:

- Vertical Format (default)

- Horizontal Format.

Based on the nature of the rule table, a rules creator can decide to use a vertical

format (as in the ex amples above where concrete rules go vertically one after

another) or a horizontal format where Condition and Action are located in the

rows and the rules themselves go into columns. Here is an example of the proper

horizontal format for the same rule tabl e "helloWorld":

OpenRules® automatically recognizes that a table has a vertical or a horizontal

format. You can use Excel's Copy and Paste Special feature to transpo se a rule

table from one format to another.

Note. When a rule table has too many rules (more tha n you can see on one page)

it is better to use the vertical format to avoid Excel's limitations: a worksheet has

a maximum of 65,536 rows but it is limited to 2 56 columns.

Merging Cells

OpenRules® recognizes the powerful Cell Merging mechanism supported by

Excel and other standard table editing tools. Here is an example of a rule table

with merged cells:

OpenRules, Inc. OpenRules® User Manual

65

Rules void testMerge(String value1, String value2)

Rule C1 C2 A1 A2

 value1.equals(val) value2.equals(val) out("A1: " + text);
out("A2: " +

text);

 String val String val String text String text

Name Value Text 1 Text 2

1

B

One
11+21

12

2 Two 22

3
Three

31 32

4 D 41 42

The semantics of this ta ble is intuitive and described in the following table:

Value

1

Value

2

Applied

Rules

Printed

Results

B One 1
A1: 11+21

A2: 12

B Two 2
A1: 11+21

A2: 22

B Three 3
A1: 31

A2: 32

D Three 4
A1: 41

A2: 42

A Two none

D Two none

Restriction . We added th e first column with rules numbers to avoid the known

implementation restriction that the very first column (the first row for horizontal

rule tables) cannot contain merged rows. More examples can be found in the

standard rule project "Merge" - click here to analyze more rules. When you use

the standard decision tables, you may put the standard condition òC#ó in the

very first column and use numbers to mark each tableõs row.

Sub-Columns and Sub -Rows for Dynamic Arrays

One table column can consist of several sub -columns (see sub-columns "Min" and

"Max" in the example above). You may efficiently use the Excel merge

http://openrules.com/docs/xls/MergeRules.xls
http://openrules.com/docs/man_rules.html#minmaxColumns

OpenRules, Inc. OpenRules® User Manual

66

mechanism to combine code cells and to present them in the most intuitive way.

Here is an example with an unlimited number of sub -columns:

As you can see, condition C6 contains 4 sub -columns for different combinations of

rates. The cells in the Condition, code, parameters and display values , rows are

merged. You can insert more sub -columns (use Excel's menu "Insert") to handle

more rate combinations if necessary without a ny changes in the code. The

parameter row is defined as a String arra y, String[] rate s . The actual values

of the parameters should go from left to right and the first empty value in a sub -

column should indicate the end of the array " rates". You can see the complete

example in the rule table "Rule Family 212" in the file Loan1.xls .

If your rule table has a horizontal format, you may use multiple sub -rows in a

similar way (see the example in file UpSell.xls).

Using Expressions inside Rule Tables

OpenRules® allows a rules designer to use òalmostó natural language expressions

inside rule tables to represent intervals of numbers, strings, dates, etc. You also

may use Java expressions whenever necessary .

Integer and Real Interval s

You may use plain English expressions to define different intervals for integer

and real decision variables inside rule tables. Instead of creating multiple

columns for defining different ranges for integer and real values, a business user

http://openrules.com/docs/xls/Loan1.xls
http://openrules.com/docs/xls/UpSell.xls

OpenRules, Inc. OpenRules® User Manual

67

may define from -to intervals in practically unlimited English using such phrases

as: "500-1000", "between 500 and 1000", "Less than 16", "More or equals to 17",

"17 and older", "< 50", ">= 10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by

specifying their two bounds or sometimes only one bound. Here are some

examples of valid integer intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5, 6, 7, 8, 9, and 10

5;10 contains 5, 6, 7, 8, 9, and 10

[5,10) contains 5 but not 10

5 - 10 contains 5 and 10

5-10 contains 5 and 10

5- 10 contains 5 and 10

-5 - 20 contains -5 and 20

-5 - -20
 error: left bound is greater than the right

one

-5 - -2 contains -5 , -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5 does not contain 5

more 10 does not contain 10

more than 10 does not contain 10

10+ more than 10

>10 does not contain 10

>=10 contains 10

between 5 and 10 contains 5 and 10

no less than 10 contains 10

no more th an 5 contains 5

