OPENRULES®

Open Source Business
Decision Management System

Release 6.2.5

User Manual

OpenRules, Inc.
www.openrules.com
August2013

http://www.openrules.com/

OpenRules, Inc. OpenRule$ User Manual

Table of Contents

oo 18 o 1o o 1SRRI 6
T L=y 1] (] Y/ 6
OPENRUIEECOMPONENLS ...t eee ettt et eee et eeee e e e eee e eeemes 7
(Do ToI0] 4 [=T 0 A @] 01Y7=T o 110] L PP 7

(O] { I O o] g (o1 o PP UPPPPPPPPPRSUPPPPPPPTIN 8

Spreadsheet Organization and Management............ccovveeiivieiiiimneeeeeeiie e e eeeeeens 9
WOorkbooks, WaKSheets, and TabIES.......oou ittt rer e e 9
How OpenRule&Tables Are RECOGNIZEM.covieeeeeeeeeeeeee e, 10
OpenRUleSRUIE Table EXAMPLE...........cue oot ee e, 12
Business and TEChNICAl VIEWS..........uuuiiiiiiiiiiiiiieic e e e e e 13

Decision Modeling and EXEILION............ocuuuiiiiiiieeiiiiee e 14
Starting With DECISION........uuuiii e e e e e e e e eemraaaas 15
Defining DECISION TaADIESoiiiiiiiiiiiiiiiee eeeees 18

Decision Table EXecution LOGIC...........ccoeeeeiiieiiiiiieeeeeeeeeeeeeeeeeeeeee e 20
AND/OR CONAIIONS.....utttiiiiiieeeeiiiiiiiie e e e e e e e e e e e e e s s snnrereeeaeeaeeaeas 20
DecCision Table OPEratQrS...........covviiiiiiiieieieiiieiieee 21
Using Regular Expressions in Decision Table Conditians...................uuveveeee. 24
Conditions and Conclusions without Operators.............cccvvveviviiiieiiniiiniiiiee 24
Using Deision Variable Names inside Decision Table Cells.............ccc........... 25
Using Formulas inside Decision Tables............cccvviiiiiiiiiiiiiieeeeee e 26
Direct References to Decision Variables.............ccccciiiiiiiiieiieieeeeeeeeeeeee 27
Defining BUSINESS GIOSSANY.ccceiiieiiiiiiei e e eettee e et e e ese e e e e e e e e e e et e e e e 28
DefiNiNG TESE DALA......uuii i i eemr e e e e e e e et e e e e s amia e e eeaeas 29
Connecting the Decisions with Business ObJeCtS............ooiiieriiiiiiin e 31
DECISION EXECULION.ot e et e e e e e e e e eaete e e e e e e e amnaaaeeeaeas 32
[T od] o AN = V£ £ S 33
DECISION TESHNG. ...t ieeieeeiitiie ettt e et e e e e e e e e e e e e e eeaas e e eaaeeennes 33
Decision Syntax Validation..............coooviiiiiiiiiiiccceeein e 34
DecCiSion EXECULION REPOILS.......uuiiiiiiiiiiiee ittt 35
D Z=To] (o] o N I = T o IO PEPPP TP 38
RuUleS REPOSITOrY SEAICH.......coiiiiiiiiie s 39
CoNSISIENCY CNECKING.....ciiiiiiiiiiiiieie e e e e e e 40

Advanced DeCISION TabBIES.........uuuuiie s 40
Specialized Conditions and CONCIUSIONS.c.uuuuiiiieeiiieeee e eeaee e 40
Specialized DeciSioN TabIeS.........oooiiiii e 41

DeCISIONTADIEL. ... 41

OpenRules, Inc. OpenRule$ User Manual

DECISIONTADICZ... ... 43
Business Rules Defined on Collections of ODJECTS.........vvvvviiiiiiiiiiee 44
Decision Tables for Comparing Ranking LIStS.............coooiiiiiiiiceieeeeeeeeeeeee e 46

RUIE TAIES. ...t e e a7
SIMPIE RUIE TaDIE. ... e 48
How Rule Tables Are Organized.............oooooiiiiiiiiieiieeeeeeeeeeeeee e 50
Separating Business antechnical INformation..............ccocooi e 53
How Rule Tables Are EXECULE.ccoi i e e e e eeeees 56

Relationships between Rules inside Rule Tables.............cccvvvviiiiiiiinnnnnnd 56

Multi-Hit RUIE TabIES ... 57

Rules Overrides in MuHit Rule Tables............cccoviiiieeeee 58

SINGIEHIt RUIE TADIES......ciiiiieieieeee e a e e e e e aeead 60

RUIE SEOUENCES......oiiiieeeeeeeeeeeeeeeett e e e e e e e e e e e e e e naaaaaaeas 61

Relationships among Rule Tables.............ccoo i 62
Simple AND / OR Conditions in Rule Tables.............uuuiiiiiiiiiieiee e 63
Horizontaland Vertical RuUle TableS...........uuviiiiiiiiiieiee e 64
MEIGING CIIS...ceiiiiiiiiiiiiii e e e e e e e e e e e e e e e e et e e e e e e e eeeeees 64
SubColumns and SUHROWS fOr DYNAMIC AITAYSuuuuuiiieiiiiiiiiiiiinrea e e e e e e eeaaaaaaeens 65
Using Expressions inside Rule TabIes..........ooviiiiiiiiiieee e 66

Integer and REANTEIVAIS............ooiiiiiiiii e 66

Comparing Integer and Real NUMDBELS...........oovvviiiiiiiiiiii 68

Using Comparison Operators inside Rule Tables.........ccccoooviiiiieiiilll 69

Camparing DAES.........ccoiviiiiiiiiieeeeeeeeeeee 70

Comparing Boolean Values.............ccooooeiiiiiiii e 71

Representing String DOMAINS..........uuuuiiiiiiiiiee e eeae e e 72

Representing Domains of NUMDELS..........ooiiiiiiiiiiiiii e 73

USING Java EXPreSSIONS......coiiiiiiiiiiie e eeeeiiiie e e e ettt e e e e e e e e e e e e e eenraaas 73

Expanding and Customizing Predefined Types..........ccccccvviiiiiieeivivviiiiceieeee A5

PerformancaConsiderations. ..o 75

RUIE TeMPIALES ... e 75
SIMPIE RUIES TEMPIATES. ...ttt e e eeeanaes 76
Defining Default Rules within Templates.............cccooiiiioie e 77

Templates with Default Rules for MulHit Tables..........ccccoiiiii 77

Templates with Default Rules for Singlé Tables...............ccoevviiiiieiiiecciiin. 78
Partial Template Implementation.............cccooiieeiiiiiiiie e eeeeviiie e 9
Templates with Optional Conditions and ACLIONS...........c.coeevviiiiiiii e, 81
Templaies for the Default Decision TabIeS..........oovviiiiiii e e 82

DeCISION TEMPIALES aeeees 85

OpenRules, Inc. OpenRule$ User Manual

Decision Table TemMPpIates...........ccooooiiiiiiiiieeeeeeeeeeeeeeee e 85
(10153 (0] 41122 11 o] o F O PPUUUPPRRSUPPPPPP 86
OPENRUIEBAPL ..ottt eet ettt ee e 87
OPENRUIESEIING APL ..o 88
ENQINE CONSIIUCTOLSuvveiiiiiiiiiiiiiieis s s s s s s e e s e e e e e e e e e e e e e e e e aaaaaaaaaeeeaaeeeeeeeeeeees 88
ENQGINE RUNS.....cco i e e e e e e e e aeeas 90
Undefined MEtNOUS.uuiiiiiiiiiee et 90
Accessing Password Protected Excel Eiles..............ccccoviieeiiiiieeeeeeeeee, 92
ENQgINe AtACNMENLS.uviiiiiiiiiicr e aeeees 92
ENQINE VEISION....cc oo 92
DynamicC RUIES UPUALES.........uueiiiiiieiiiiiiiiieee e 92
DECISION APLL...oeiiiiiiieeeeeeee ettt ettt ittt e et e e eeeeeees 93
DTt 1S o g I == 1] o = PR 93
DTt 1S o] o 0] 0 1S3 1 11 o (o 4= 94
Dol IS o] g I = U= 1 4[] (T o 94
DECISION RUNS.....coiiiiiiiiiieeeeeeeeeeeeee e e e e e e n e e e e e e e e 95
Executing Decision Methods From EXCel..........ccccviiiiiiiiiiiieee 96
DECISION GIOSSALY. ... utttieeiiieeee ettt eaeeeeas 97
Business Concepts and DecCiSion ODJECES............uuvviiiiiiiiriiiiiiiieeeeeee e 98
Changing Decisn Variables Types between Decision Runs........................... 99
DeCiSion EXECULION MOUES.......uuiiieiiieieie e eeee e e e 100
(0T [[T Lo 17 AN o d ISP 100
JSROA IMPIEMENTALIONiii i e eere e e e e e e e e e e e e e e eeaeas 101
L0 T W (=T To 11 o PP ORRPURPPPPRPPPN 102
Integration with Java and XML ... 102
JAVA ClaSSES. .. it i i e i i ettt 102
XIMILFIIES. ..o r e a e e e e e e s 104
Data MOUEING ...ttt e e e e e e e e e e e e e e ameeeees 105
Datatype and Data TabIeS........coooiiiiiiiie e 107
How Datatype Tables Are Organized..............eoiiii i 109
How Data Tables Are Organized...........ccooo e 112
Predefined DatatyPeS........ceuuuriiii ettt aeee 114
Accessing Excel Data from Javaynamic ObJeCTS.........ovvveiiiiiiiiiiiir e 115
How to Define Data for Aggregated Datatypes........co.uuiiiiiiiiiiiine e 117
Finding DateElements Using Primary KEYS.......ccoiiiieiiiiiiiiiieeeeiiiiee e e e 117
CrossReferences Between Data Tables...........ooooiiiiiiiiiiiiciiiiiieeeeeeeeeeee e 118
OPENRUIEEREPOSITONY. ...ttt eme e e e, 119
Logical and Physical REPOSITONIES.........uuiiiiieeiiieeiee e 120

OpenRules, Inc. OpenRule$ User Manual

Hierarchies of Rule WOrKDOOKS...........ccoii oo 121
Included WOrKDOOKS.........ooiii e 121
Include Path and Common Libraries of Rule Workbaaks.............cccccceeeneenn. 122
Using Regular Expressmin the Names of Included Files............cccccvvvvvnnnne. 123
IMPOIS frOM JAVA........ceiiiiiiiieieeee e a e e e e e e e e e e e aaeaeees 123
IMPOIES FrOM XML...ociiiiiiiieieeeee e e e e e e e e e e e e e e e aaeaeees 124

Parameterized Rule REPOSITONIES.coooiiiiiiiiiie e 125

| LSR5 o] @ o] o] 1 o) I 125

Rules Authoring and Maintenance TOQLS.............uuuiiiiiiiiiiire e 126

Database INtegration............ooeuuuiiiiii e e e e e eaanans 128
EXEErNal RUIESo ensnnnnnes 128
OPENRUIEEPIOJECLS ..ottt eee ettt et ettt eneeee e 129

PreREUISITESo 129

SAMPIE PrOJECES. ... 129

Main Configuration PrOJECL.........ooiiiiii et 130
SUPPOrtiNG LIDrari@s.......ccoooeei e 130
Predefined Types and TemMpIates.............ooooiiiiiiiiieiiiieeeeeeeeeee 131

LIC=T03 o] 1oz 1R U] o] o Lo U PTST 131

50

OpenRules, Inc. OpenRule8 User Manual

INTRODUCTION

OpenRules® was developed in 2003 by OpenRules, Inc. as an open source
Business Rules Management S ystem (BRMS) and since then has became one of
the most popular BRMS on the market . Over these years OpenRules® has been
naturally transformed in a Business Decision Management System (BDMS) with
proven records of delivering and mai ntaining reliable decision support software.
OpenRules® is a winner of several software awards for innovation and is used
worldwide by multi -billion dollar corporations, major banks, insurers, health
care providers, government agencies, online stores, universities, and many other
institutions.

Brief History

From the very b eginning, OpenRules® was oriented to subject matter experts
(business analysts) allowing them to work in concert with software developers to
create, maintain , and efficiently execute business rules housed in enterprise -
class rules repositories. OpenRules® avoided the introduction of yet another 6 r ul e
| anguagwell asaanother proprietary rules management GUI. Instead,
OpenRules® relied on commonly used tools such as MS Excel, Google Docs and
Eclipse integrated with the standard Java . This approach enabled OpenRules®
users to create and maintain inter -related decision tables directly in Excel .
Initially e ach rules table included several additional rows , in which a software
developer could place Java shippets to specify the exact semantics of rule
conditions and actions.

In March of 2008, OpenRules® Release 5 introduced Rule Templates . Templates
allow ed a business analyst to create hu ndreds and thousands of business rules
based on a small number of templates supported by software developers. Rule
templates minimized the use of Java snippets and hid them from business users.
Rule templates were a significant step in minimizing rule rep ositories and
clearly separating the roles of business analysts and software specialists in
maintaining the rules.

In March of 2011 OpenRules® introduced Release 6, which finally moved control
over business logic to business users. OpenRules® 6 effectively remov ed any
Java coding from rules representation allow ing business analyst s themselves to
specify their decisions and supporting decision tables directly and completely in
Excel. Business users can also create business glossaries and test casesin Excel
tables. They may then test the accuracy of execute their decisions without the
need for any coding at all .

Once a decision has been tested it can be easily incorporated into any Java or
.NET environment . This process may involve IT specialists but only to integrat e
the business glossary with a specific business object model . The business logic
remains the complete prerogative of subject matter experts

60©

http://www.openrules.com/
http://www.openrules.com/ReleaseNotes_5.0.htm
http://www.openrules.com/RuleTemplates.htm
http://www.openrules.com/ReleaseNotes_6.0.htm

OpenRules, Inc. OpenRule8 User Manual

OpenRules® Components

OpenRules® offers the following decision management components:

Rule Repository for management of enterprise -level decision rules

Rule Engine for execution of decisions and different business rules
Rule Dialog for building rules -based Web questionnaires
Rule Learner for rules discovery and predictive an alytics

Rule Solver for solving constraint satisfaction and optimization problems

=A =/ =4 =2 =

Finite State Machines f or event procesgi ndhearmddt®adonne

Integration of these components with e xecutable decisions has effectively
converted OpenRules® from a BRMS to a BDMS, Business Decision

Management Sy st em, or i ent-canttroi ©d eap mliiomati on dev

OpenRules, Inc. is a professional open source company that provides software,

product documentation and technical support and other services that are highly
praised by our customers. You may start learning about product with the

document dGetting Started 6 which describes how to install OpenRules® and

includes simple examples. Then you may look at a more complex example in the

t ut o rCalaulhtingd Tax Return 6 .This user manual covers the core OpenRules®

concepts in greater depth . Additional OpenRules® components are described in

separate user manuals : see Rule Learner , Rule Solver, and Rule Dialog .

Document Conventions

- The regular Century Schoolbook font is used for descriptive information .
- The italic Century Schoolbook font is used for notes and fragments
clarifying the text .

- The Courier New font i s used for code examples

70

11%

http://www.openrules.com/RuleRepository.htm
http://www.openrules.com/RuleEngine.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/StateMachines.htm
http://openrules.com/company.htm
http://openrules.com/services.htm
http://openrules.com/what_they_say.htm
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/ORD.htm

OpenRules, Inc. OpenRule8 User Manual

CORE CONCEPTS

OpenRules® is a BDMS, Business Decision Management System, oriented to
0decticseinotir i ¢ 6 appl i cat iQpenRuldsé wiite® pheemvellt -.
established spreadsheet concepts of workbooks, worksheets, and table s to build
enterprise -level rule repositories. Each OpenRules® workbook is comprised of
one or more worksheets that can be used to separate information by types or

categories.

To create and edit rules and other tables presented in Excel -files you can use any

standard spreadsheet editor such as:

f MS Excel E
f OpenOfficekE
f Google Docs E

Google DocsE is especially useful for collaborative rules management.

OpenRules® supports different types of spreadsheets that are defined by their
keywords. Here is the list o f OpenRules® tables along with brief description of

each:

Defines a decision that may consist of multig
Decision subdecisions associated with differetecision
tables

This is a singlehit decision tabl¢hat uses
multiple conditiors on differentdefined on

DecisionTabl e or DT or

DeC'S'On;a:JIES'n_C:IEH't OF | variables toreachconclusons about the
RulerFamily decisionvariables

For eachdecision variableised inthe decision
Glossar tablesthe glossary defines_. related bus_iness
—_ conceptsas well agelated implementation
attributes and their possible domain
Associates business concepts specified in tH
DecisionObject glossary with concrete objects defined outsic
the decision (i.e. as Java objects or Excel D¢

80©

OpenRules, Inc. OpenRule8 User Manual

tables)

Defines a decisiotable that includes Java
snippets that specify custom logic for
Rules conditions and actions. Reatbre Some Rules
tables may refer templateghat hide those
Java snippets.

Defines a new data type directly in Excel tha|

Datatype _ can be used for testing
Data Creates an array of test objects
Variable Creates one test object
This table definethestructure ofarules
Environment repository by listing all included workbooks,

XML files, and Java packages
Defines expressions using snippets of Java
code and knowilecision variable and objects

Method

DecisionTablel or DT1 or
DecisionTable Multi Hit

A multi-hit decision tablehat allows rule
overrides

A multi-hit decision tablghat like
DecisionTablezxecutes all rules in tegown

Decision Table2 or DT2 orderbut results of the execution of previous
rules may affect the conditions of rulbst
follow
A special table type used by OpenRtiles

Layout Formsand OpenRulésDialog

The following section will provide a detail ed description of these concepts.

SPREADSHEET ORGANIZATION AND MANAGEMENT

OpenRules® uses Excel spreadsheets to represent and maintain business rules,
web forms, and other information that can be organized using a tabular format.
Excel is the best tool to handle different tables and is a popular and widely used

tool among business analysts.

Workbooks, Worksheets, and Tables

OpenRules® utilizes commonly used concepts of workbooks and worksheets.
These can be represented and maintained in multiple Excel files. Each
OpenRules® workbook is comprised of one or more worksheets that can be used
to separate information by categories. Each worksheet, in turn, is comprised of

one or more tables. Decision tables are the most typical OpenRules ® tables and

90

http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/pdf/OpenRulesDialog.pdf

OpenRules, Inc. OpenRule8 User Manual

are used to represent business rules. Workbooks can include tables of different

types, each of which can support a different underlying logic.

How OpenRules® Tables Are Recognized

OpenRules® recognizes the tables inside Excel files using the following parsing

algorithm.

1. The OpenRules®p ar ser splits spreadsh&achlpgicalnt o
table should be separated by at least one empty row or column at the start of
the table. Table parsing is performed from left to right and from top to
bottom. The first non -empty cell (i.e. cell with some text in it) that does not
belong to a previously parsed table becomes the top -left corner of a new
parsed table.

2. The parser determin es the width/height of the ta ble using non -empty cells as
its clues. Merged cells are important and are considered as one cell. If the
top-left cell of a table starts with a predefined keyword (see the table below),
then such a table is parsed into an Open Rules® table.

3. All other "tables ," i.e. those that do not begin with a keyword are ignored and

may contain any information.

The list of all keywords was described above. OpenRules® can be extended with

more table types, each wi th their own keyword.

While not reflected in the table recognition algorithm, it is good practice to use a
black background with a white foreground for the very first row. All cells in this
row should be merged , so that the first row explicitly specifiest he table width.

n

We call this row the " table signature The text inside this row (consisting of
one or more merged cells) is the table signature that starts with a keyword. The
information after the keyword usually contains a unique table name and

additi onal information that depends on the table type.

If you want to put a table title before the signature row, use an empty row

between the title and the first row of the actual table. Do not forget to put an

100

0p a3

LI

OpenRules, Inc. OpenRule$ User Manual

empty row after the last table row. Here are exam ples of some typical tables

recognized by OpenRules®.

OpenRules® table with 3 columns and 2 rows:

Keyword <some text>

Something Something Something

Something Something Something
OpenRule s® table with 3 columns and still 2 rows:

Keyword Something Sometling

Something Something Something

Something Something Something

Keyword <some text>

Something

Something

OpenRules® table with 3 columns and 3 rows (empty initial cells are acceptable):

Something

Something

Something

Keyword <some text>

OpenRules® table with 3 columns and 2 rows (the empty 3rd row ends the table):

Something Something Something
Something Something Something
Something Something Something

OpenRules® table with 2 columns and 2 rows (the empty cell in the 3rd columno f
the title row results in the 4th columns being ignored. This also points out the

importance of merging cells in the title row):

Keyword Something | Something
Something Something Something Something
Something Something Something Something

OpenRules® will not recognize this table (there is no empty row before the

signature row):

11©

OpenRules, Inc. OpenRule$ User Manual

Table Title
Keyword <some text>

Something Something
Something Something
Something

Fonts and coloring schema are a matter of the table designer's taste. The
designer has at his/her disposal the entire presentation power of Excel (including

comments) to make the OpenRules ® tables more self -explanatory.

OpenRules®Rule T able Example

Here is an example of a worksheet with two rule s tables:

A Microsoft Excel - HelloCustomer.xls o g] 4|
J@ Filz Edit View Insert Format Tools Data Window Help _|ﬁ||i]
DEEa SR 2@~ &z 4s8|E ¥/B -
¢a0 -] =
el TA] B | C | D =
el =
| 2
IRENI u1=c void defineGreeting(int hour, Response response)
| ?_ Hour From Hour To Set Greeting
g 0 11 Good Marning
g 12 17 Good Afternoon
110 18 22 Good Evening
11 23 24 Good MNight

Rules void defineSalutation(Customer customer, Response response)

- 18 Gender Marital Status Set Salutation
19 Male hlr.
20 Female Married
21 Female Single
22
23|
[4 [« |» [M["Decision Tables & Launcher £ Environment £ 14
Ready || [

This workbook is comprised of three worksheets:

1. Worksheet "Decision Tables" - includes rule tables
2. Worksheet "Launcher" - includes a method that defines an order and

conditions under which rules will be executed

120

OpenRules, Inc. OpenRule8 User Manual

3. Worksheet "Environment” - defines the structure of a rules repository by

listing all included workbooks, XML files, and Java packages (if any)

The worksheet "Decision Tables" is comprised of two rule tables "defineGreeting"
and "defineSal utation". Rule tables are a traditional way to represent business
decision tables. Rule tables are decision tables that usually describe
combinations of conditions and actions that should be taken when all of the
conditions have been satisfied. In the ta ble "defineGreeting"”, the action "Set
Greeting" will be executed when an "hour," passed to this table as a parameter,

is between "Hour From" and "Hour To". In the table "defineSalutation", an action
"Set Salutation" will be executed when a customer's Gende r and Marital Status

correspond to the proper row.

These tables start with signature rows that are determined by a keyword in the

first cell of the table . A table signature in general has the following format:

Keyword return - type table - name(typel parl, ty pe2 par2,..)

where table -name is a one-word function name and return -type, typel, and type
2 are types defined in the current OpenRules @ configuration . For example, type

may be any basic Java type such as int, double, Date, or Strin g.

The rule tables above are recognized by the keyword " Rules". All of the columns
have been merged into a single cell in the signature rows. Merging cells B3, C3,
and D3 specifies that table "defineGreeting" has 3 columns. A table includes all
those rows under its signature tha t contain non empty cells: in the example

above, an empty row 12 indicates the end of the table "defineGreeting".

Limitation . Avoid merging rule rows in the very first column (or in the very first

row for horizontal tables) - it may lead to invalid logic.

Business and Technical Views
OpenRules®t abl es s uc hanads O0DRay hae@stwio views:

[1] Business View

13©

OpenRules, Inc. OpenRule$ User Manual

[2] Technical View

These two views are implemented using Excel's outline buttons [1] and [2] at the
top left corner of every worksheet - see the figure below. This figure represents a
business view - no technical details about the implementation are provided. For
example, from this view it is hard to tell for sure what greeting will be generated

at 11 o'clock: "Good Morning" or "Good Afternoon"? | f you push the Technical
View button [2] (or the button " +" on the left), you will see the hidden rows with

the technical details of this rules table:

[Tz]] [A] B | c | D
2
i Rules void defineGreeting(int hour, Response response)
{4 G C2 Al
min <= hour hour <= max requnsei.map.put{'greetmg !
5 greeting);
| & int min int max String greeting
=1 | 7 Hour From Hour To Set Greeting
i 0 1 Good Morning
g 12 17 Good Afternoon
10 18 22 Good Evening
11 23 24 Good Might

The technical view opens hidden rows 4 -6 that contain the implementation
details. In particular, you can see that both "Hour From" and "Hour To" are
included in the definition of the time intervals. Different types of tables have

different technical views.

Note. Using Rules Templates you may completely split business and technical

information between different Excel tables. Decisions do not use technical views

at all because they do not require any coding and rely on predefined templa tes.

DECISION MODELING AND EXECUTION

OpenRules® methodological approach allows business analysts to develop their
executable decisions with underlying decision tables without (or only with a

limited) help from software developers. You may become familiar with the major

14©

OpenRules, Inc. OpenRule$ User Manual

decision modeling concepts from simple examples provided in the document

oGetting Started 6 and sassocatedhtutorials . First we will consider the

simple implementation options for decision modeling, and later on we will

describe more advanced OpenRules® concepts.

Starting with Decision

From the OpenRules® perspective a decision contains:

- a set of decision variables that can take specific values from domains of
values
- a set of decision rules (frequently expressed as decision tables) that

specify relationships between decision variables.

Some decision variables are known (decision input) and some of them are
unknown (decision output). A decision may consist of other decisions (sub -
decisions). To execute a decision means to assign values to unknown decision
variables in such a way that satisfies the decision rules. This approach

correspondstotheoncomi ng OMG standdMNd. known as

OpenRules® applies a top-down approach to decision modeling . This means that
we usually start with the definition of a Decision and not with rules or data.
Only then we will define decision tables, a glossary, and then data. Here is an

example of a Decision:

Decision DeterminePatientTherapy

Decisions Execute Decision Tables
Define Medication = DefineMedication()
Define Creatinine Clearance = CalculateCreatinineClearance()
Define Dosing = DefineDosing()
Check Drug Interaction = WarnAboutDruglnteraction()

Here the deci si ont TolDeert eep ynd nfeuPmd-dessions: o f

150

http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Decision1040EZ.pdf
http://www.linkedin.com/redirect?url=http%3A%2F%2Fwww%2Eomg%2Eorg%2Fcgi-bin%2Fdoc%3Fbmi%2F2011-3-4&urlhash=xleh&_t=tracking_anet

OpenRules, Inc. OpenRule$ User Manual

T oDefi ne Medi cationod t hat idscision rneble e ment e d
oDefineMedicationo

T oDefine Creatinine Clearanced that is i mp|[l
oDefineCreatinineClearancebo

T oDefine Dosi ngd mentedtusing sa decisipnl eable
oDefineDosingbéd

T 0Check Drug I nteractiondé that i s i mpl emen

oOWar nAbout Druglnteractiono6.

The tabl e hdxectiwo oandl umns 0 De c Dexisiomdabléséand OEXke
(those are not keywords and you can use any other titles for these columns) . The

first column contains the names of all our sub -decisions - here we can use any

combinations of words as decision names. The second column contains exact

names of decision table s that implement these sub -decisions. The decision table

names cannot contain spaces or special char alct
they should al ways6bewlhir @kt eidedcisidngableswillt h e

actually be executed by the OpenRules ® engine.

OpenRules® allows you to use multiple (embedded)tablesof t he type o0Decils
to define more complex decisions. For example, a top -level decision, that defines
the main decision variable, may be defined through several sub -decisions about

related variable s:

Decision DecisionMain

Decisions ExecuteRules / SubDecisions
DefineVariable1 = DecisionTabl®ariablel()
Define Variable2 = DecisionTabl¥ariable21()
DefineVariable2 = DecisionTabl®ariable22()
DefineVariable3 = Decisiorivariable 3(decision
DefineVariable 4 = DecisionTabl®ariablet()

In order to Define Variable 2 it is necessary to execute two decision table s. Some
decisions, like "Define Variable 3", may require their own separate sub-decisions

such as described in the following table:

16©

OpenRules, Inc. OpenRule$ User Manual

Decision DecisioriVariable3

Decisions ExecuteRules
DefineVariable3.1 = DecisionTabl®ariable31()
DefineVariable3.2 = DecisionTabl®ariable32()
DefineVariable3.3 = DecisionTabl¥ariable33()

These tables can be kept in different files and can be cons idered as building
blocks for your decision s. This top -down approach with Decision Tables and
dependencies between them allows you to represent even quite complex decision

logic in an intuitive, easy to understand way.

Some decisions may have a more complex structure than the just described
sequence of sub-decisions. You can even use conditions inside decision tables. For
example, consider a situation when the first sub -decision validates your data and
a second sub-decision executes complex calculations b ut only if the preceding
validation was successful. Here is an example of such a decision from the tax

calculation tutorial :

Condition ActionPrint ActionExecute
1040EZ Eligible Decisions Execute
Validate = ValidateTaxReturn{decision)
Is TRUE Calculate = DetermineTaxReturn(decision)
Is FALSE Do Mot Calculate

Sincethis t a b Dezisian Appl y104dsesmsn6 opti onal col,wenn o0 Con/di

have t o add a second row. The keywords 0|Cc
OActionExecutebd ar e defined i & templates standa
oDeci si onToesnepd attlee® configuration file o0Deci s|ic

folder 6 openrul es. conf i g o decisioTVariasle & A ® 4 Ekgiblese s a
that is defined by the first (unconditional) sub -deci si on 0 Vadsdurdeat e ¢ . W
that thedeci si on OWRel udate$ ax ddcision saeable tolTRUE

or FALSE. Thenthe secondsubdeci si on o0Cal cul ated6 wi |l be |e:

17©

http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRule$ User Manual

01040EZ EI igibled is TRIiE decisiwih,eonApiptl yil § 4 FRZSE

will simply print o0Do No in o€ axanple | tleetremson will be printed

by the decisiontable 6 Val i dat eTaxRetur no.

Note. You may wuse many conditions of the type
decision variable s . Similarly, you may use an optiona
which instead of decision variable s can use any formulas defined on any known

objects. It is al so possible to add custom actions using an optional action

OActi odsAeg 60Deci si onTempl ates. x|l s6 in the fol

When you have completed defini ng all decision and sub-decisions, you may define

decision table s.

Defining Decision Table s

OpenRules® decision modeling approach utilizes the classical decision tables that

were in the heart of OpenRules ® BDMS from its introduction in 2003

OpenRules® uses t he Rueysdvord oDepresent di fferent

decision tables. Rules t ables rely on Java snippets to specify execution logic of

multiple conditions and actions. In 2011 OpenRules ® version 6 introduced a

t

speci al type of deci si oDbecidioaTalblee ® WNOh otttheatk ey

do not need Java snippets and rely on the p redefined business logic for its
conditions and conclusions defined on already known decision variable s. For

exampl e, | et s consi deDetermineCuastomerGeetimgp b e

Decision DetermineCustomerGreeting

Decisions Execute Rules
Define Greeting Word := DefineGreeting()
Define Salutation Word := DefineSalutation()

It refers to two decision table s. Here is an example of the first decision table :

18©

deci si

W C

D N

OpenRules, Inc. OpenRule$ User Manual

DecisionTable DefineGreeting |

Condition Condition Conclusion
Current Hour Current Hour Greeting
>= 0 <= 11 Is Good Morning
>= 11 <= 17 Is Good Afternoon
>= 17 <= 22 Is Good Evening
>= 22 <= 24 Is Good Night

Its f i r st row c¢ont ®eécisienTable 6k eayawdtiquednande (no spaces

allowed). The second row uses keywords0 Condi td om@omml usi oné

the types of the decision table columns. The third row contains decision variable s
expressed in plain English (spaces are allowed but the variable names should be

unique).

The columns of a decision table define conditions and con clusions using different
operators and operands appropriate to the decision variable specified in the
column headings. The rows of a decision table specify multiple rules. For
instance, in the above decision table 6 De f i n e Grthe esdcond glé can be

read as:

filF Current Hour is morghanor equal to 11JAND Current Hour is less
thanor equalto 17 THEN Greeting is Goodfternoom .

to |sp

Similarly, we may define the second decision table 0 Def i neSal utati ono

determines a salutation word (it uses the keyword oDT6 t hat i s

0DecisionTabl ed)

DT DefineSalutation |

Condition Condition Conclusion

Gender Marital Status Salutation
Is Male Is Mr.
Is Female | Is Married Is Mrs.
Is Female | Is Single Is Ms.

190

a

synjon

OpenRules, Inc. OpenRule8 User Manual

If some cells in the rule conditions are em pty, it is assumed that this condition is
satisfied. A decision table may have no conditions but it always should contain

at least one conclusion.

Decision Table Execution Logic

OpenRules® executes all rules within DecisionTable in a top-down order. When
all conditions inside one rule (row) are satisfied the proper conclusion(s) from the

same row will be executed, and all other rules will be ignored.

Note. OpenRules® decision tables can be used to implement a methodological
approach described in the book ¢The Decision Model & It relies on a special type

of decision tabl es dhatl dlequide thatRhe lorler éfaubes | | es 6

inside a decision table should not matter. It means that to comply with the

Decision Model principles, you should not rely on the default top-down rules

execution order of OpenRules® decision tables. Instead, you should design your

decision table (you even may use the keywor d O Rul eiFmami ¢ gd)iof ODTO
such a way that all rules are mutually exclusive and cover all possible

combinations of conditions. The advantage of this approach is that when you

decide to add new rules to your rule family you may place them in any ro ws

without jeopardizing the execution logic. However, i n some cases, this approach

may lead to much more complex organization of rule families to compare with

the standard decision tables .

AND/OR Conditions

The conditions in a decision table are always connected by a logical operator
OANDG. When you need to use O0ORG6, yoan may ad
alternative to the previous rule(s). However, some conditions may have a

decision variable defined as an array, and within such array -conditions 0 OR06

are allowed . Consider for example the following , more complex decision table :

200

http://www.kpiusa.com/index.php?option=com_content&view=article&id=22&Itemid=8

OpenRules, Inc.

OpenRule$ User Manual

= One Do Not Seving Account, DebUATY Care
- [~
ot New Bronze Saver {include Checlong Accoont nckide Saving Account Are Web Banking
CO wih 25 besis point CD with 75 basis point ncrasse
Bg;" New Bronze Saver |inclide éh:r;m::;?"m :qwu:: ncrease, Noney Market Mtual| Are | Mooay Market Mutual Fund, Crectt
VAIGCRiL Fromce: Fund, Credt Card Card
CO wth 25 dasss point CD with 50 besis pont ncrease.
hechng [
'g;" Mow Bronze Stver |nchide ¢ ::;:: i ::m':: ncrease. Honey Market Matual | Are | Money Markel Mutual Fund, Credt
Fund, Credt Care Caett, DebUATM Card, Yeab Baring
CD with 50 basis pont ncrease.
CO with 25 sasis point »
& Ons Codt chce| Checkng Accawnt Do Wot | ense, Money Market Mutuni| Are | Mo7eY Market Uutual Fund, Credt Ooid Fackage
e} hehde Pund, Web Banking Card, DebUATM Card, Wab
Bankng Evolerage Actount
CD with 50 bass pont Nerease.
a CO win 25 bass pont Money Market Nutusi Fund, Cresa
e 3
Bg'ne Pt chude Chechno::;:a:t - ::::. ncrease Noney Market Metual| Are | Carg with no anaual fee, Debt/ATM | Patinum Package
Fusd, Web Saniting Card, Web Banking weh no charge,
Erotarage Accoynt
Are Noae Sofry

Here the decision variables 0 Cust omer , Po&€fuislt ®dner Product

0oOf fered the second rule can be read

P r ardys of istengs . I this case,

as:

IF Customer Profile Is One Of New or Bronze or Silver

AND Customer Products Include Checking Account and
Overdraft Protection

AND Customer Products Do Not Include CD with 25 basis point
increase, Money Market Mutual Fund, and Credit Card

THEN Offer ed Products ARE CD with 25 basis point increase,
Money Market Mutual Fund, and Credit Card

Decision Table Operators

OpenRules® supports multiple ways to define operators within decision table

conditions and conclusions. When you use a text form of operato rs you can freely
use upper and lower cases and spaces. The following operators can be used inside

decision table conditions:

When you use
Is R inside Excel
' to avoid confusion with
Exel 6s own f or
Is Not = Isn%afaw,olhgﬁéggﬁgm’ Not Defines an inequality operatd
S Is More, More, Is More Than, Is | For integers and real number
Greater, Greater, Is Greater Than| and Dates

210

OpenRules, Inc.

OpenRule$ User Manual

Is More Or Equal. Is Mor®r Equal
To, Is More Than Or Equal To, Is

For integers and real number
and Dates

-= Greater Or Equal To, Is Greater Tha|
Or Equal To
Is Less Or Equal, Is Less Than Or| For integers and real number
Equal To, Is Less Than Or Equal To,| and Dates
<= Smaller Or Equal To, Is Smaller Tha
Or EqualTo, Is Smaller Than Or Equd
To,
< Is Less, Less, Is Less Than, Is Small| For integers and real number
Smaller, Is Smaller Than and Dates
Is True For booleans
Is False For booleans
Astringiscmsi der ed
Is Empty if it is eith
only zero or more whitespace
For strings o
Contains Contain contains nuse
comparison is not case
sensitive
For strings o
Sta_lrts Start with, Start startsvv_i h A hoo. T
With comparison is not case
sensitive
Match Matches, Is Like, Like Compares if the s}ring matehs
a regular expression
No NotMatch, Does Not Match, Not Like| Compares if a string does ng
Match Is Not Like, Different, Different From| match a regiar expression
For integers and real number
The interval camedefinel as:
Within Inside, Inside Interval, Interval [0;9], (1;20], 5 10, between 5
and 10, more than 5 and less
equals 10 seemore
For integer and real numbers
Is One, Is One of Many, Is Among, and fo_r strings. Checks if a
Is One Of value is among elements of tf
Among . .
domain of values listed
through comma
For integer and real numbers
and forstrings. Checks if a
Is Not i
One Of Is not among, Not among value |sNOT_ among elements
of the domain of values listed
through comma
To compare twarrays.
Returns true when the first
Include Include All array (decision variable)

include all elements of the
second arrayvalue withn
decisiontable cell)

220

OpenRules, Inc. OpenRule8 User Manual

To compare an array or valug

Exclude Do Not Include, Exclude One Of with an array
To compare twarrays.
Returns true when the first
Does Not IncludeNot Al array (decision variable) doe

Include not include all elements of the
second arng(value withn
decision table cell)

To compare an array with an
array

Intersect Intersect With, Intersects

If the decision variable s do not have an expected type for a particular operator,

the proper syntax error will be diagnosed.

The following operat ors can be used inside decision table conclusions:

Assigns one value to the conclusion
decision variable When you

Is =, == Ai==0 inside Excel
avoid confusion w
formulas.

Assigns one or more values listed

Are through commas to the conclusion

variablethat is expected to be an array
Addsone or more values listed through
Add commas to the conclusismriablethat is
expected to be an array

Takes theconclwsiondecision variable

Assign . adds to it a value from the rule cell, an
Plus saves the result in the same decision
variable.
Takes theconclusiondecision variable,
Assign _ subtracts from it a value from the rule
Minus - cell, and saves the result in the same
decsion variable.
Takes theconclusiondecision variable,
Assign . multiplies it by a value from the rule ce
Multiply - and saves the result in the same decis
variable.
Takes theconclusiondecision variable,
Assign /= divides it by a value @m the rule cell,
Divide and saves the result in the same decis

variable.

230

OpenRules, Inc.

OpenRule$ User Manual

Using Regular Expressions in Decision Table Conditions

OpenRules® allows you to use standard regular expressions . Operators "Match"”

and "No Match" (and their synonyms from the above table) allow you to match

the content of your text decision variable s with custom patterns such as phone

number or Social Security Number (SSN)

that validates SSN:

. Here is an example of a decision table

DecisionTable testSSN

Condition Message
SSN Message
No .
Match \d{3}-\d{2}-\d{4} Invalid SSN
Match \d{3}-\d{2}-\d{4} Valid SSN

The use of this decision table is described in the sample projec t

oDeci si onHe

|l 1l oJavabd.

Conditions and Conclusions without Operators

Sometimes the creation of special columns for operators seems unnecessary |,

especially for the operator s 0 | a @ d

simpler format as in this decision table :

DT DefineGreeting |

0 Wi @OpknRules® allows you to use a

If Then

Current .

Hour Greeting

0-11 Good Morning

11-17 Good Afternoon

17-22 Good Evening

22-24 Good Night

As y ou can see, i nstead of

keywords oCondi t|

keywor ds 01 f oresgecticely .0 While thi6 decision table looks much

simpler in comparison

with the functionally identical

decision table defined

240

C

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRule$ User Manual

above, we need to make an implicit assumption that the lower and upper bounds

for the i-@fléf-tads e0c. are included.

Using Decision Variable Names i nside Decision Table Cells

When your decision table contains too many columns it may become too wide and

unmanageable. In practice large decision tables have many empty cells because

not all decision variables participate in all rule conditions even if the proper

columns are reserved or all rules. To make your decision table more compact,

OpenRules® allows you to move a variable name from the column title to the rule

cells. To do that, instead of the st andard col umnds structure| v

columns

Condition
Variable Mame

Oper | Value

you may use another column representation with 3 sub -columns:

ConditionVarOpervalue
Attribute

Variable Name | Oper | Value

This way you may replace a wide table with many condition columns like the one

below:

DecisionTable classifcationRules

Condition Condition Condition
C_OTH_EXPMNS_AMT |A_ESTATE_TAX_AMT Attribute
= 398 == 10054 Oper Value Is High = 66
Is Low = 63
== 53 Is Low = 45
Is Low = 66
Is Low = 78
Is Other = 56

to a much more compact table that may look as follows:

250

OpenRules, Inc. OpenRule$ User Manual

DecisionTable classifcationRules

ConditionVarOperValue ConditionVarOperValue | ConditionVarOperValue
Attribute Attribute - Attribute

C_OTH_EXPNS_AMT| == 398 |A ESTATE TAX A ==| 10054 Attribute | Oper| Value High

E_PRTSCRP _TOT L{ =<=| -6955 |AGIL_TPI_RATIO |<=]0.95993 Is Low =| B3

C_OTH_EXPNS_AMT| == 83 ORD DIVIDENDS == | BB17 Is Low = 4%

TAXABLE_INC_TPI_R]== [0.810447|TENT TAX_AMT |==| 301630 Is Low =| B6

DIVIDENDS_AND_INT| == 12348 |EXTNSN_PYMNT |<= | 30000 Is Low = Td
s Other =| 56

You simply replace a column of thathhas they pe 0 Con
standard t ype O0Conditi onVar Op estedddf a eoumn oSthemi | ar | vy
type oConcl usisoen 6oa ycooul umany ouf t he type o0Concl us
with 3 sub -columns that represent:

- Decision variable name

- Operator

- Value.

Using Formulas inside Decision Table s

OpenRules® allows you to use formulas in the rule cells instead of constants. The

formulas usua lly have the following format:

.= ('expression)

where an Oexpressiond can be written using st
an example:

DecisionTable CalculateAdjustedGrossincome

Conclusion
Adjusted Gross Income

= (getReal("Wages") + getReal("Taxable Interest") +
getReal("Unemployment Compensation™))

This decision table has only one conclusion that simply calculates a value for the

decision variable 0 Adj usted Gross | ncomed adecision sum of \
variables O Wages o, OTaxable I nteresto, and oUnempl
example also demonstrate s how to gain access to different decision variable s d

you may wr i t\GARIABlEEt RAMHE 6()0 f o rdecigioa avariable s.

Similarly , you may use methods get | nt (é) , g eD Btoeo(l &npe) get
get String(é)

260

OpenRules, Inc. OpenRule$ User Manual

You may also put your formula in a specially defined Method and then refer to
this method from the decision table o observe how it is done in the following

example:

Method double taxablelncome()
return getReal("Adjusted Gross Income”) - getReal("Dependent Amount™);

DecisionTable Calculate Taxablelncome

ConditionAny Conclusion
Condition Taxable Income
Is True = (taxablelncome() = 0) Is = taxablelncome()
Is False = (taxablelncome() = 0) Is 0

Here we def i ned tasablaineome(fbe tt had s & reat valuesing
t he standard Java type dotdio mdiHock ihside Aothe n we us

conditions and one conclusion of this decision table .

Note. Actually the formula format ::= (expression) is a shortcut for a more
standard OpenRules ®formula format : = 06 + (dbatpaiscecansbe osed)

inside decision table s.

Direct References to Decision Variables

You may want to refer to values of some decision variables inside cells for
di fferent tables. To do that, you may si mp

of the variable name. For example, in the following table

DT DefineWhomToCharge

Condition Condition Conclusion
Vendor Provider Charged Entity
ls Empty | FALSE Is $Vendor
|s Empty TRUE Is UMK OWN
Iz Mot | ABC, KLM,)
One Of vz Is SProvider

the conclusion -column contains references $Vendor and $Provide r to
the values of decision variables Vendor and Provider. The reference
$Vendor is similartothe formula :: = get String(AXoamayor 0)

also use similar references inside arrays. For example, to express a

270

OpenRules, Inc. OpenRule$ User Manual

condition that a Vendor should not be among pro viders, you may use the

oper als MotOn®Of 6 wi t h aABC,#YendoryXYd o

Defining Business Glossary

While defining decision table s, we freely introduced different decision variable s
assuming that they are somehow defined. The business glossa ry is a special
OpenRules® table that actually defines all decision variable s. The Glossary table

has the following structure:

Glossary glossary
Variable Business Concept Attribute Domain

The first column will simply list all of the decision variable s using exactly the
same names that were used inside the decision tables. The second column
associates different decision variable s with the business concepts to which they
belong. Usually you want to keep decision variable s that belong to the same
businessconcept together and merge all rows
that share the same concept. Here is an example of a glossary from the standard

OpenRules®e x ampl e o0Deci sionLoano:

280

n

t

h e

OpenRules, Inc.

Glossary glossary

OpenRule$ User Manual

Variable Object Attribute Domain
Monthly Income monthlylncome 0-5000000
Mortgage Holder mortgageHolder Yes,MNo
Outside Credit Score outsideCreditScore 0-999
Loan Holder loanHolder Yes. Mo
Customer
Credit Card Balance creditCardBalance -1000000 - 100000000
Education Loan Balance educationLoanBalance |-1000000 - 100000000
Internal Credit Rating internalCreditRating ABCDF
Internal Analyst Opinion internalAnalystOpinion |High,Mid,Low
Income Validation Result incomeValidationResult | SUFFICIENT, UNSUFFICIENT,?
Debt Research Result Request |debtResearchResult High Mid Low,?
Loan Qualification Result loanQualificationResult |QUALIFIED, NOT QUALIFIED, ?
Total Income totallncome 0-500000
Internal
Total Debt totalDebt 0-500000
Al rows for the concept squseuscthd aasr ed Quesrtgoende.r 6

The third column O0OAttri but e ¢thedecisionaaribes ot ec hn|
0 these names will be used to connect our decision variable s with attributes of

objects used by the actual applications , for which a decision has been defined.

The application objects could be defined in Java, in Excel tables, in XML, etc.

The decision does not have to know about it: the only requirement is that the

attribute names should follow the usual naming convention for identifi ers in
languages like Java: it basically means no spaces allowed. The last column
0 D o ma, is ophional , but it can be useful to specify which values are allowed to
be used for different decision variable s. Decision variable domains can be
specified using the naming conventi on for the intervals and domain s described
below. The above glossary provides a few intuitive examples of such domains.

These domains can be used during the validation of a decision.

Defining Test Data

290

a

c

OpenRules, Inc.

OpenRule$ User Manual

OpenRules® provides a convenient way to define test data for decisions directly

in Excel without

the necessity of writ ing any Java code. A non-technical user

can define all business concepts in the Glossary table using Datatype tables. For

example, here i s

above:

a

Datatype

tabl e for

Datatype Customer

Siring fullName

Siring SSN

int monthlylncome

int monthlyDebt

Siring mortgageHolder

int outsideCreditScore
Siring loanHolder

int creditCardBalance

int educationLoanBalance
Siring internalCreditRating
Siring internalAnalystOpinion

t he

busi

The first column d efines the type of the attribute using standard Java types such

a sint 6 ,doubled ,Booteand , Strig 6 |,

Dated O The

s e ¢ comtdins the |

same attribute names that were defined in the Glossary. To create an array of

objects

below:

o fCustomexé twe@ emay

u s eDatad table kke thedne 0

; 5 mongageHol | outsiceCraditse radecar | BOUOnL | raiCred |inemaianal
‘ S Lame SN marthincome | monthtyDett 2’3" o loarkolder | c | nnrﬂ:&nm iRation | yetOpinken
|
Credit |Education| Internal Insernal
Borrower Full Name| Borrower SSN Yrordh | montniyDepe | MortGage |Outside Creditl |y yioiger | Card | Losn | Credit | Anayst
Balance | Balance | Rating | Opinion
:l»’-:(r:l N._Johnson 15782.5044 000 2300 Yes | 720 No 2500 | 0 I | Low
{Mary K_Brown 0S5 3 AN 2800 No | a0 No_ E54 I 23800 | B |__Low
{Robest Cooper 241580082 6400 2000 Yeu 735 AL 200 | (| C 1 Md

This table is too wide (and difficult to read) , so we could actually transpose it to a

more convenient but equivalent format

300

ness

umn

c

OpenRules, Inc

Data Customer custom

ers

OpenRule$ User Manual

fullName Borrower Full Name Peter N. Mary K. Brown Robert
Johnson Cooper Jr.
SSN Borrower SSN 157-82-5344 056-45-8233 | 241-56-9082
monthlylncome Monthly Income 5000 4300 5400
monthlyDebt Monthly Debt 2300 2800 2800
mortgageHolder Mortgage Holder Yes No Yes
outsideCreditScore Outside Credit Score 720 6520 735
loanHolder Loan Holder No No Yes
creditCardBalance Credit Card Balance 2500 5654 1200
educationLoanBalance Education Loan 0 23800 0
Balance
internalCreditRating Internal Credit Rating A B C
internalAnalystOpinion Inlerna_l ﬁ_\nalysl Low Low Mid
Opinion

Now, whenever we need to reference the first customer we can refer to him as

customers[0] . Similarly, i f you want to define a doubled monthly income for the

second custromer, 0

You can find many additional details about data modeling in this

May K.

Byownvay simply write

(customers[1].monthlylncome

Connecting the Decisions with Business Objects

*2)

section.

To tell OpenRules® that we w ant to associate the object customers[0] with our

busi ness

tabl e

concept

0Deci sionObjecté

OCustomer 6

t hat

def i

may |

ned i n

ook as

DecisionObject decisionObjects

Business Concept Business Object
Customer := customers[0]
Request .= loanRequests[0]
Internal .= internal

Here we also associate other business concepts namely Request and Internal

with the proper business objects & see how they are defined in the standard

exampl e

oDeci

S i

onLoanbé6.

310

t he
f ol

Gl

oW

OpenRules, Inc. OpenRule$ User Manual

The above table connects a decision with test data defined by business users
directly in Excel . This allows the decision to be tested. However, after the
decision is tested, it will be integrated into a real application that may use
objects defined in Java, in XML, or in a database, etc. For example, if there are
instances of Java classes Customer and LoanRequest, they may be put in the
obj ect odeci si on ¢ xetute ahe decision. unsti@sdcase, dhe proper

table O0decisionObjectsodé may | ook 1i ke:

DecisionObject decisionObjects

Business Concept Business Object
Customer .= decision.get("customer"”)
Request = decision.get("loanRequests")
Internal = internal

It is important that D ecision does not c&knowO6 about a particular object
implementation : the only requirement is that the attribute inside these objects

should have the same names as in the glossary.

Note. You cannot use the predefined function
0decisionObjectsd because its content is be

internal variable 0deci siondé directly.

Decision Execution

OpenRules® provides a template for Java launchers that may be used to execute

differ ent decisions. There are OpenRules® APl classes OpenRulesEngine and

Decision. Here is an example of a decision launcher for the sample project

oDeci sionLoanbo:

320

OpenRules, Inc. OpenRule$ User Manual

import com.openrules.ruleengine.Decision;

public class Main {
public static void main(String[] args) {
String fileMame = "file:rules/main/Decision.xls";
Decision decision = new Decision("DetermineloanPreQualificationResults",fileName);
decision.execute();

¥
Actually, it just creates an instance of the class Decision . It has only two

parameters:

1) apathtothe mai n Excel file o0Decision. x|l sbé

2) aname of the main Decision inside this Excel file.

When you execute this Java la uncher usingthe pr ovi ded batch fi
execute it from your Eclipse IDE, it will produce output that may look like the

following :

*** Decision DetermineLoanPreQualificationResults ***

Decision has been i nitialized
Decision DetermineLoanPreQualificationResults: Calculate Internal
Variables

Conclusion: Total Debt Is 165600.0

Conclusion: Total Income Is 360000.0

Decision DetermineLoanPreQualificationResults: Validate Income

Conclusion: Income Validation Resu It Is SUFFICIENT

Decision DetermineLoanPreQualificationResults: Debt Research

Conclusion: Debt Research Result Is Low

Decision DetermineLoanPreQualificationResults: Summarize

Conclusion: Loan Qualification Result Is NOT QUALIFIED

ADDITIONAL DEBT RESEARCH | S NEEDED from DetermineLoanQualificationResult
*** QOpenRules made a decision ***

This output shows all sub -decisions and conclusion results for the corresponding

decision table s.

Decision Analysis

Decision Testing

OpenRules® provides an ability to create a test harness comprised of an
executable set of different test cases. It is important that the same people who

design rules (usually business analysts) are able to design tests for them.

330

OpenRules, Inc. OpenRule8 User Manual

Usually they create test cases directly in Excel by specifying the ir own
data/object types and creating instances of test objects of these types. Read more

at the section Defining Test Data .

Decision Syntax Validation

OpenRules® allows you to validate your decision by checking that:
- there are no syntax error in the organization of all decision tables
- values inside decision variable cells correspond to the associated domains

defined in the glossary.

The validation template is described in the standard file

dDecisionTableValidate Templates.xls 6 .
If you use the Eclipse Plugin, it will display é

OpenRules® also provides a special plugin for Eclipse IDE,a de-facto
standard project management tools for software developers within a Java -based
development environment. Eclipse is used for code editing, debugging, and
testing of rule projects within a single commonly known integrated development
environment. OpenRules® has been designed to catch as many errors as possible
in design -rime vs. run -time when it is too late. OpenRules® Plugin automatically
diagnoses errors in the Excel -files and displays the proper error messages inside

Eclipse views like at the picture below:

34©

http://www.eclipse.org/

OpenRules, Inc. OpenRule8 User Manual

& Java - RunHelloCustomer.java - Eclipse SDK S (i (=] 3

File Edit Source Refactor Navigate Search Project Run Window Help
IEREEER S B @ e |a-] 20 o
[825

r o g
[# pack... I3 “_Hiera... LNavi... = O || 3] runHelloCustomer java 23\ =0
DlBE A
Hfs
T el i : : ine. ine; -
E|_‘:pﬂ s B import com.openrules.ruleengine.COpenRulesEngine
B8 src . .
Ela hello public class RunHelloCustomer {
LoE [3] customer.java o | _'l:'
i @-[J) Response.java
H : s = e)
- [J] RunHelloCustomer java Problm!Javadochedaraﬁonnga’dtorngl 5 5E| Ee D
‘_: " l°94j"p'°pe'ﬁe5 ~—|openRules Console
B rues/main ** Sep 10,2006 05:21:35 PM — HelloJdava [C:/OpenRules300/workspace/Hellal
j #8] Helocustomer.xis Exror: Method defineGreetingX(int,hello.Response) not found
B rules Invalid Code Fragment: frn
Bl indude
:--:@Hellol'lules.xls lint hour = Calendar.getInstance().get (Calendar.HOUR OF DAY);
b buid.properties ‘defineGreetingX (hour, response):
o boda 000 R T
~{3] compie.bat defineSalutation (customer,response);
, readme. txt out("From Rules: " + response.map.get("greeting") + ", " +
run.bat
o120
D I,G':'E“MSD at file:/C: enRules300/workspace/Hellodava/rules/main/HelloCustc
i EEB src
O Y ‘1 T g
- | |14} | »
e |

Eclipse Plug in diagnoses any errors in Excel -files before you even deploy or run
your OpenRules -based application. To make sure that Eclipse control s your
OpenRules® project, you have first to right -click to your project folder and "Add
OpenRules Nature". You always can similarly "Remove OpenRules Nature". To
be validated, your main xls -files should be placed into an Eclipse source folder
while all included files should be kept in regular (non-source) folders.
OpenRules® Plugin displays a di agnostic log with possible errors inside the
Eclipse Console view. The error messages include hyperlinks that will open the

proper Excel file with a cursor located in a cell where the error occurred.

Decision Execution Reports

OpenRules® provides an ability to generate decision execution reports in the
HTML -format. To generate an execution report, you should add the following

setting to the decision® 3ava launcher :

decision.put("report ", "On");

350

OpenRules, Inc. OpenRule$ User Manual

before calling decision.execute() . By default, execution re ports are not
generated as they are needed mainly for decision analysis. Reports are

regenerated for every decision run.

During decision execution, OpenRules® automatically creates a sub -directory
oreporto in your ma i ngenpratesjaaeport irgidertl@scsubo-r y and
directory. For every decision table, including single -hit, multi -hit, and rule
sequencing tables, OpenRules® generates a separate html -file with the name
Report<n>.<DecisionTableName>.html , Where n is an execution order
number for this particular decision table. For example, for the sample project

0Deci si dpdnRukes? dill generate the following files:

G' Report.Determinel canPreQualificationResults.html
G' Report0l.DetermineloanPreQualificationResults.html
€ Repori02.CalculatelnternalVariables.html

€ Repori03.DeterminelncomeValidationResult.html

¢ Reportl4.DetermineDebtResearchResult.htrml

E' Reportl5.DetermineloanQualificationResult.html

The first file contains a list of links to all executed decision tables:

OpenRules Execution Report of Sat Jan 05 11:19:49 EST 2013

Decision "DetermineL.oanPreQualificationResults"

Decision Table

1 || Determinel.oanPreQualificationResulis

2 CalculateInternalVariables
3 DeterminelncomeValidationR esult
4 DetermineDebiResearchResult

) |

DeterminelLoanQualificationResuli

360

OpenRules, Inc. OpenRule$ User Manual

Below are other g enerated files (one per decision table) with lists of rules (rows)

that were actually executed:

Decision Table "DetermineL.oanPreQualificationResults" (Rule Sequence)

Executed

ActionExecute

Decisions Execute Rules

Calculate Internal Variables = CalculatelnternalVariables()
Validate Income = DeterminelncomeValidationR esuli()
Debt Research = DetermineDebtResearchR esuli()
Summatize = Determinel oanQualificationR esult()

Decision Table "CalculateInternalVariables" (Single-Hit)

Executed
© Conchision Conchision
Rule

Total Debt Total Income

Is == getlnt("Monthly Debt") * getlnt("Loan Term") || Is := getlnt("Monthly Income") * getlnt("Loan Term")

Decision Table "DetermineIncomeValidationResult" (Single-Hit)

Executed I . ,
Condition Conclusion
Rule

Total Income Income Validation Result

Is More Than == getlnt("Total Debt") * 2 Is SUFFICIENT

Decision Table “DetermineDebtResearchResult™ (Single-Hir)

Condson C ~ oo Condhion < hon Condtion

Oﬂ))dt C n-dn Outside Credit Lon CreditCard | FEdocation Loan
Score Score Holder Bakace Balance

Holder Ratmg Opimion Resuie

e | |] T

Mortgage Internal Credit Internal Analyst | Debt Research

370

OpenRules, Inc. OpenRule$ User Manual

Decision Table "Determinel.oanQualificationResult" (Single-Hit)

uted o . - .
- Condition Condition Conclusion
Rule

Income Validation Result | Debt Research Result | Loan Qualification Result

Is SUFFICIENT Is One Of Mid. High Is QUALIFIED

These reports help a rule designer to analyze which rul es were actually executed
and in which order. The OExecuted Rule #06 corr

of a rule inside its decision table.

Note. Execution reports are intended to explain the behavior of certain decision
tables and are used mainly for a nalysis and not for production. If you turn on
report generation mode in a multi -threaded environment that shares the same
instance of OpenRulesEngine, the reports will be produced only for the first

thread.

Decision Tracing

OpenRules® relies on the stand ard Java logging facilities for the decision output.
They can be controlled bythest andard fil e o0l ogd4j . properties|o

looks like below:

log4j.rootLogger= INFO, stdout

log4j.appender.stdout= org.apache.log4j.ConsoleAppender
log4j.appender.stdout layout= org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern= %m%n
#log4j.logger.org.openl=DEBUG

You may replace INFOto DEBUGand uncomment the last line to see OpenRules
debugging information. To redirect all logs into a file dresults.txt dyou may

changethefile 01 og4j . prasfolewst i es o

log4j.rootLogger=INFO, stdout
#log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout=org.apache.log4j.FileAppender
log4j.appender.stdout.File=results.txt
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4 j.appender.stdout.layout.ConversionPattern=%m%n

uncomment the next line to see OpenRules debug messages
#log4j.logger.org.openl=DEBUG

380

OpenRules, Inc. OpenRule8 User Manual

You may contr ol h odve ©it xail kratii sy ey yoeitrt i ng
0oTraced. For example, if you add the fol
decision.put("trace" , "Off");

just before calling decision.execute(), then your output will be much more

compact:
*** Decision Det ermineLoanPreQualificationResults ***
Decision DetermineLoanPreQualificationResults: Calculate Internal
Variables

Decision DetermineLoanPreQualificationResults: Validate Income

Decision DetermineLoanPreQualificationResults: Summarize

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult
*** OpenRules made a decision ***

You may also change output by modifying the tracing details inside the proper
decision templates i n DetisonTamplatdsikxlg ur at iaon

dDecisionTableExecu teTemplates.xls 0.

Rules Repository Search

To analyze rules within one Excel files you may effectively use familiar Search

and Replace features provided by Excel or Google Docs.

When you want to search across multiple Excel files and folders, you may use a
free while powerfultoo | ¢ a IcéTeaReplacer6 t hat can be very

search & replace in OpenRules repositories. The following options are available:
Perform search b efore replacing

Match whole word only

Ignore word case

Do backup before replace

=A = =4 =4 =4

Deselect files on which you dondt want
Here is an example of its graphical interface:

390

t

dec

OWi

fil

us ef

o p

http://www.icetear.com/

OpenRules, Inc. OpenRule8 User Manual

Searchfor, Maral Satus
Replace with:
Searchpath: C_SourceRepo'\opennies solver\DMN Primer)

, SJJ o .ls—x g0lyer - rec-:emr [izta I
C_SourceRepo‘\operrules solver\DMN Primer'\repository \Glossary ds
C_SourczRepo'\opervules solver\DMN Pramer\repository\Decisions'\PrePost BureauRisk \Appication ScoreRules s

[¥] Match whole word arly
7] igrore case

[I"] Backup before replace
[| Don search in subfolders

| Select Al | [Select None | Hokd CTRL or SHIFT buttons to select. You may also double-<lick an item to apen .

| Done searching. Found 3 matches. Select needed files and click replace. -—

Consistency Checking

OpenRules® providesa special componeriRule SolverE that along with powerful
optimization features allow a user to check consistency of the decision models
and find possible conflicts within decision tables and across multiple decision
tables. The detail description of the product can be found at

http://openrules.com/pdf/RulesSolver.UserManual.pdf

ADVANCED DECISION TABLES

In real -world project you may need more complex representation s of rule sets
and the relationships between them than th ose allowed by the default decision
tables. OpenRules® allows you to use advanced decision tables and to define

your own rule sets with your own logic.
Specialized Conditions and Conclusions

The standard col uGondtiono® & iEahclusignp @ $nays have
two sub-columns: one for operators and another for values. OpenRules® allows
you to specify c ol umns of Iftéh ea rnildgnpbe st h@a t raehure Bub-t
columns. Instead, they allow you to use operators or even natural language

expressions together with values to represent different intervals and domains of

400

http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.com/rulesolver.htm
http://openrules.com/pdf/RulesSolver.UserManual.pdf

OpenRules, Inc. OpenRule$ User Manual

values. Read about different ways to represent intervals and domains in this

section below.

Sometimes your conditions or actions are no t related to a particular decision
variable and can be calculated using formulas. For example, a condition can be
defined based on combination of several decision variable s, and you would not
want to artificially add an intermediate decision variable to your glossary in

order to accommodate each needed combination of existing decision variable s. In

such a case, youmayuseas peci alCondiyopy @ | i ke in the exanmn
below:
DecisionTable Calculate Taxablelncome
ConditionAny Conclusion
Condition Taxable Income
Is True = (taxablelncome() = 0) Is = taxablelncome()
Is False = (taxablelncome() = 0) Is 0

Here the word o0Condi t i ondecisovar@ablenand insteapr esent|

you may insert any text, i . e. oCompare Adjusted Gross
Amount 6. Wh e n your conclusi on, d odedsionn o t set
variable but rather does something that is expressed in the formulas within the

cells of this column, you should use a column of type QActionAny 6 . It does nat

have sub-columns because there is no need for an operator.

Note. There i s al soAdionoo Itthmnt dfs teygpud vaal ent t o |t
Specialized Decision Table s

Sometimes the default behavior of a DecisionTable (as single-hit rules tables) is
not sufficient. OpenRules® provide two additional types of decision tables
DecisionTable1 (or DT1) and DecisionTable2 (or DT2). While we recommend
avoiding these types of decision tables, in certain situations they provide a

convenient way around the limitations imposed by the standard DecisionTable.

DecisionTable 1

410

OpenRules, Inc. OpenRule$ User Manual

Contrary to the standard DecisionTable that is implemented as a single-hit rules
table, decision tables of type dDecisionTablel 6o r oDecisionTarbl eMul t i H
implemented as multi -hit decision tables. dDecisionTablel 6 supports t hle

following rules execution logic:

1. All rules are eval uated and if their conditions are satisfied, they will be
mar ked as O0Oto be executedo

2. Al actions col umns (of t he types oConc
OAct i omAnMedés,saged) for the O0to be executedod

in top -down order.

Thus, we can make two important observations about the behavior of the

oDecisionTable 1l 6 :

1 Rule actions cannot affect the conditions of any other rules in the decision
table & there will be no re -evaluation of any conditions
1 Rule overrides are permitted. The action o f any executed rule may

override the action of any previously executed rule

Letds consider an exampl personfof age 17 arlolder is h at stat
eligible to drive. However, in Florida 16 yearolds canal so dri veod. I f we

present this r ule using the standard DecisionTable, it may look as follows:

DecisionTable ValidateDrivingEligibility

Condition Condition Conclusion
Driver's Age US State Driving Eligibility

= 17 Is Eligible
Is 16 Is Mot Florida Is Mot Eligible

ls 16 ls Florida Is Eligible
< 16 Is Mot Eligible

Using a non -standard DecisionTable 1 we may present the same rule as:

420

OpenRules, Inc. OpenRule$ User Manual

DecisionTable1 ValidateDrivingEligibility

Condition Condition Conclusion
Driver's Age US State Driving Eligibility
Is Eligible
< 17 Is Mot Eligible
> 16 Is Flarida Is Eligible
In the DecisionTablel t he f i r st unconditional ruloe wi l |
OEl i giblebd. The second rule wildl reset it to

than 17. But for 16 year olds living in Florida, the third rule will override the

variable again to OEIlIigiblebo.

DecisionTable 2

There is one more type of decision table, dDecisionTable 2,6 that is similar to
decisionTablel 6 b ut thelattionw ef already executed rules to affect the
conditionsof rul es speci f i eldecidioaTamef 6t lsaurp.pod t s t he f ol

rules execution logic:

1. Rules are evaluated in top -down order and if a rule condition is satisfied,
then the rule actions are immediately executed.
2. Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Thus, we can make two important observations about the behavior of the

oDecisionTable 26 :

9 Rule actions can affect the conditions of other rules
9 There could be rule overrides when rules defined below already executed

rules could override already executed actions.

Letds consider the following exampl e

430

OpenRules, Inc. OpenRule$ User Manual

DecisionTable? CalculateTaxablelncome

Condition Conclusion

Taxable Income Taxable Income

= (getReal("Adjusted Gross Income”) -
getReal("Dependent Amount™))

Is Less 1] Is 0
Here the first (unconditional) rule will calculate and set the value of the decision
variable 0 Taxabl e | ncomed. The second rul e

less than O. If it is true, this rule will reset this decision var iable to 0.

Business Rules Defined on Collections of Objects

Previously, when OpenRules ® users needed to run decisions against collections
(arrays) of business objects, they needed to use Java loops. This release adds
an ability to execute one decision a gainst a collection of objects and to calculate
values defined on the entire collection within single decision run

Let's consider an example " DecisionManyCustomers " added to the standard
OpenRules® installation. There is a standard Java bean Customer wit h
different customer attributes such as name, age, gender, salary, etc. There is
also a Java class "CollectionOfCustomers™:

public class CollectionOfCustomers {
Customer|[] customers
int minSalary
int maxSalary
int numberOfRichCustomers
int totalSalary

We want to pass this collection to a decision that will process all customers
from this collection in one run and will calculate such attributes as

440

OpenRules, Inc. OpenRule$ User Manual

"minSalary", "totalSalary”, "numberOfRichCustomers”, and similar attributes,
which are specified for the entire collection. Each customer within this
collection can be processed by the following rules:

DecisionTable1 EvaluateOneCustomer

Condition | Conclusio Conclusion Conclusion Conclusion Conclusion
Number of Rich . AT
Salary Wealth Total Salary Cust = Maximal Salary Minimal Salary
+= | ;= getint("Salary”) Max| ::= getint("Salary”) |[Min| == getint("Salary”)
= 1100000 Is | Rich A= 1

Pay attention that we use here a multi -hit table (DecsionTablel), so both rules
will be executed. The first one unconditionally calculate the total. max, and

min salaries. The second rule defines a number of "rich" customers inside the
collection. To accumulate the proper values, we use the existing operator "+="
and newly introduced operators "Min" and "Max".

To execute the above decision table for all customers, we will utilize a new

action " ActionRulesOnArray " within the followin g decision table:
DecisionTable CalculateCustomerTotals
Conclusion Conclusion Conclusion ActionRulesOnArray
Total Salary |Maximal Salary | Minimal Salary | AT | opiect Type Rules
Objects
Is 0 Is 0 Is 1000000 | Customers Customer EvaluateOneCustomer

Here the first 3 actions (conclusions) simply define i nitial values of collection
attributes. The last action has 3 sub -columns:

- The name of the array of objects as it is defined in the glossary
("Customers")

- The type of those objects ("Customer")

- The name of the decision table ("EvaluateOneCustomer") thatw ill be
used to processes each objects form this collection.

Thus, a combination of the two decisions tables (similar to the above ones)
provides business users with a quite intuitive way to apply rules over
collections of business objects without necessity to deal with programming
constructions.

450

OpenRules, Inc. OpenRule$ User Manual

Decision Tables for Comparing Ranking Lists

In many real -world situations decisions are made based on comparison of
attributes that belong to different predefined lists of values while the values
inside these lists are ordered (ranked). For example, a business rule may
sound as follows:

"If Diagnostic Need is Stronger Than Sensitivity Level
Then Document Access should be Allowed"
Here the Diagnostic Need could belong to the ranking list:
1. Immediately Life -Threatenin g
2. Life-Threatening
3. Acute
4. Chronic.

Similarly the Sensitivity Level could belong to this ranking list:

1. High
2. Mid
3. Low.

Newly defined custom templates allow us to present the relations between
these two ranking lists in the following decision table of the newt ype

"DecisionTableCompareRanks

DecisionTableCompareRanks CompareDiagnosticNeedWithSensitivityLevel

Diagnostic Need ensitivity Level High Mid Low
Immediately Life-Threatening Stronger Stronger Stronger
Life-Threatening Weaker Stronger Stronger
Acute Weaker Weaker Weaker
Chronic Weaker Weaker Weaker

Then the above rule may be expressed usi ng the following decision table of the

new type " DecisionTableRanking

460©

OpenRules, Inc. OpenRule$ User Manual

DecisionTableRanking DefineDocumentAccess

ConditionCompareRanks Conclusion
If Doc:
<rank1> <stronger/weaker> <rank2> AIGHE ACEORR
Diagnostic Need | Stronger Sensitivity Level Is Allow
Diagnostic Need Weaker Sensitivity Level Is Decline

To define "Stronger/Weaker" relations between these ranks, this decision table
will automatically invoke the decision table with the dynamically defined
name "Compare<rankl>With<rank2> " (after removing all spaces).

The benefits of these new types of decision tables become clear when you think
about supporting hundreds of similar ranking lists. These tables may cover
complex relationships between multiple ranking lists and at the same time

they remain easy to understand and to be maintained by business users.

The complete working example " DecisionRankingLists " with the proper
custom templates (see file "RankTemplates.xIs") is included into the standard
OpenRules® installation.

RULE TABLES

OpenRules® supports several ways to represent business rules inside Exc el
tables. Default decision table is the most popular way to present sets of related
business rules because they do not require any coding . However, there classical
decision tables can represent more complex execution logic that is frequently

custom for different conditions and actions.

Actually, standard DecisionTable is a special case of an OpenRules © single-hit
decision table that is based on a predefined template (see below). Since 2003,
OpenRules® allows its users to configure different types of custom decision tables
directly in Excel. In spite of the necessity to use Java shippets to specify custom
logic, these tables are successfully used by major corporations in real -world

decision support applications. This chapter describes different decision tables

470

OpenRules, Inc. OpenRule$ User Manual

that go beyond the default d ecision tables. It will also describe how to use simple
IF-THEN -ELSE statements within Excel -based tables of type "Method".

Simple Rule Table

Let's consider a simple set of HelloWorld rules that can be used to generate a
string like "Good Morning, World!" based on the actual time of the day. How one

understands such concepts as "morning", "afternoon”, "evening", and "night" is

defined in this simple rules table:

Fules void helloWyorldiint hour)
Hour From Hour To Greeting
0 11 Zood Maorming
12 17 Good Afternoon
15 22 Zood Evening
23 24 ood Might

Hopefully, this rule table is not much more difficult to compare with the default
DecisonTable. It states that if the current hour is between 0 and 11, the greeting
should be "Good Morning", etc. You may change Hour From or Hour To if you
want to customize the definition of "morning" or "evening". This table is also
oriented to a business user. However, its first row already includes some

technical information (a table signature):

Rules void helloWorld(int hour)

Here "Rules " is an OpenRules® keyword for this type of tables . "helloWworld" is
the name of this particular rules table. It tells to an external program or to other
rules how to launch this rule s table. Actually, this is a typical description of a
programm ing method (its signature) that has one integer parameter and returns
nothing (the type "void"). The integer parameter "hour" is expected to contain the
current time of the day. While you can always hide this information from a

business user, it is an impo rtant specification of this rule table.

480

You

OpenRules, Inc. OpenRule$ User Manual

may ask: where is the implementation logic for this rule table? All rule

tables include additional hidden rows (frequently password protected) that you

can

see if you click on the buttons "+" to open the Technical View below:

i]z2] Al B = | D
1
2
& Fules void helloWyorld{int hour)
4 A a2 Al
5 min <= hour |(hour <= max |System.out printinfgresting + ", WWorld!™)
6 int min int ma String greeting

Pl Hour From Hour To Greeting
(5 1] 11 Zood Morning
g 12 17 ood Afternoon
10 18 22 zood BEvening
e 23 24 zood Might

This part of the rule table is oriented to a technical user, who is not expected to

be a programming guru but rather a person with a basic knowledge of the "C"

fam

ily of languages which includes Java. Let's walk through these rows step by

step:

Row "Condition and Action Headers" (see row 4 in the table above) . The

initial columns with conditions should start with the letter "C" , for example
"C1", "Condition 1". The columns with actions should start with the letter
"A", for example "Al", "Action 1".

Row "Code" (see row 5 in the table above) . The cells in this row specify the

semantics of the condition or action associated with the corresponding
columns. For example, the cell B5 contains the code min <= hour . This
means that condition C1 will be true whenever the value for min in any cell
in the column below in this row is less than or equals to the parameter hour.
If hour is 15, then the C1 -conditions from rows 8 and 9 will be satisfied.
The code in the Action -columns defines what should be done when all

conditions are satisfied. For example, cell D5 contains the code:

490

OpenRules, Inc. OpenRule$ User Manual

System.out.printin(greeting + ", World!")

This code will print a str ing composed of the variable greeting and ", World!" ,
where greeting will be chosen from a row where all of the conditions are
satisfied. Again, if hour is 15, then both conditions C1 and C2 will be
satisfied only for row 9 (because 9 <= 15 <= 17). As a result, the words "Good
Afternoon, World!" will be printed. If the rule table does not contain a row
where all conditions have been satisfied, then no actions will be executed.

Such a situation can be diagnosed automatically.

- Row "Parameters"” (see row 6 in the table above) . The cells in this row specify

the types and names of the parameter s used in the previous row.

- Row "Display Values" (see row 7 in the table above) . The cells in this row

contain a natural language description of the column content.

The same table can be defined a little bit differently using one condition code for

both columns "min" and "max":

Rules void defineGreeting(App app, int hour)

C1 Al
min <= hour && hour <= max app.greeting = greeting;

int min int max String greeting
Hour From Hour To Set Greeting
0 11 Good Marning
12 17 Good Afternoon
18 22 Good Evening

23 24 Good Might

How Rule Tables Are Organized

As you have seen in the previous section, rule tables have the following
structure:

Row 1. Signature

Rules void tableName(Typel parl, Type2 par2,..) - Multi -Hit Rule Table

500

OpenRules, Inc. OpenRule8 User Manual

Rules <JavaClass> tableName(Typel parl, Type2 par2, ..) - Single-Hit Rule
Table
Row 2 : Condition/Action Indicators
The condition column indicator is a word st
The action column indicator is a word start

All other starting characters are ignored and the whole column is considered

as a comment

Row 3 : Code

The cells in each colum n (or merged cells for several columns) contain Java
Snippets.

Condition codes should contain expressions that return ~ Boolean values.
If an action code contains any correct Java snippet, the return type is

irrelevant.

Row 4 : Parameters

Each condition/acti on may have from 0 to N parameters. Usually there is
only one parameter description and it consists of two words:

parameterTyp@arameterName

Example : int min
parameterName a standard one word name that corresponds to Java
identification rules.

parameterTypean be represented using the following Java types:

- Basic Java types: boolean, char, int, long, double,
String, Date

- Standard Java classes: java.lang.Boolean,
java.lang.Integer, java.lang.Long, java.lang.Double,
java.lang.Character, java.lang. String, java.util.Date

- Any custom Java class with a public constructor that has a String
parameter

- One-dimensional arrays of the above types.

510

a |

OpenRules, Inc. OpenRule8 User Manual

Multiple parameters can be used in the situations when one code is used for

several columns. See the standardexa mpled oanl. x| s 0.

Row 5 : Columns Display Values

Text is used to give the column a definition that would be meaningful to

another reader (there are no restrictions on what text may be used).

Row 6 and below : Rules with concrete values in cells

Text cells in these rows usually contain literals that correspond to the
parameter types.
For Boolean parameters you may enter the values "TRUE" or "FALSE" (or

equally "Yes" or "No") without quotations.

Cells with Dates can be specified using java.util.Date . OpenRul es® uses
java.text.DateFormat. SHORT to convert a text defined inside a cell into
java.util.Date . Before OpenRules® 4.1 we recommended our

customers not to use Excel's Date format and define Date fields in Excel as
Text fields. The reason was the notoriou s Excel problem inherited from a
wrong assumption that 1900 was a leap year. As a result, a date entered in
Excel as 02/15/2004 could be interpreted by OpenRules © as 02/16/2004.
Starting with release 4.1 OpenRules @ correctly interprets both Date and Text

Excel Date formats.

Valid Java expression (Java snippets) may be put inside table cells by one

of two ways:

- by surrounding the expression in curly brackets, for example: {
driver.a ge+1; }
- by putting ":=" in front of your Java expression, for example:

:=driver.age+1

Make sure that the expression's type corresponds to the parameter

type.

520

http://support.microsoft.com/kb/214326/en-us

OpenRules, Inc. OpenRule8 User Manual

Empty cells inside rules means "whatever" and the proper condition is
automatically considered sat isfied. An action with an empty value will be
ignored. If the parameter has type String and you want to enter a space

character, you must explicitly enter one of the following expressions:

—_nn

{""}

Note. Excel is always trying to "guess" the type of text is inside its cells and
automatically converts the internal representation to something that may not be
exactly what you see. F or example, Excel may use a scientific format for certain
numbers. To avoid a "strange" behavior try to explicit ly define the format "text"

for the proper Excel cells.

Separating Business and Technical Information

During rules harvesting, business specialists initially create rule tables using
regular Excel tables. They put a table name in the first row and column n ames in
the second row. They start with Conditions columns and end with Action
columns. For example, they can create a table with 5 columns [C1,C2,C3,A1,A2]

assuming the following logic:
IF conditions C1 and C2 and C3 are satisfied
THEN execut e actions Al and A2
Then, a business specialist provides content for concrete rules in the rows below

the title rows.

As an example, let's consider the rule table "defineSalutation” with the rules that
define how to greet a customer (Mr., Ms, or Mrs.) base d on his/her gender and
marital status. Here is the initial business view (it is not yet syntactically

correct):

530

OpenRules, Inc. OpenRule$ User Manual

Rules defineSalutation
Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.

A business analyst has initially created only fi ~ ve rows:

- A signature "Rules defineSalutation” (it is not a real signature yet)
- A row with column titles: two conditions "Gender", "Marital Status" and one
action "Set Salutation”

- Rows with three rules that can be read as:

1) I F Gender is AMatieonTHHEN. Set Sal ut
2) | F Gender is AFemaled and Marital Status |i
3) | F Gender is AFemaled and Marital Status |i

While business specialists continue to define such rule tables, at some point a
technical specialist should take over and add to these tables the actual
implementation. The technical specialist (familiar with the software
environment into which these rules are going to be embedded) talks to the
business specialist (author of the rule table) about how the rules should be used.
In the case of the "defineSalutation" rule table, they agree that the table will be
used to generate a salutation to a customer. So, the technical specialist decides

that the table will have two parameters:

1) a customer of the type Customer

2) aresponse of the type Response

The technical specialist will modify the signature row of the table to look like
this:

Rules void defineSalutation(Customer customer, Response response)

Then she/he inserts three more rows just aft er the first (signature) row:

540

OpenRules, Inc. OpenRule$ User Manual

- Row 2 with Condition/Action indicators
- Row 3 with Condition/Action implementation

- Row 4 withthetype and name of the parameters entered in the proper column.

Here is a complete implementation of this rule table:

(e £ i

C1 2 Al
customer.gender.equals |customer.maritalStatus_equal |response.map. put('salutation”,
(gender) s(status) salutation);

String gender String status String salutation
Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
The rules implementer will decide that to support this rule table , type Customer

should have at least two attributes , "gender" and "maritalStatus”, and the type
Response should be able somehow to save different pairs (names,value)
like ("salutation”,"Mr.") . Knowing the development environment, s/he will decide
on the types of attributes. Let's assume that both types Customer and Response
correspond to Java classes, and the attri butes have the basic Java type of String.
In this case, the column "Gender" will be marked with a parameter "String

gender" and the condition will be implemented as a simple boolean expression:

customer.gender.equals(gender)

The second column "C2" is implemented similarly with a String attribute and a
parameter maritalStatus. Finally (to make it a little bit more complicated) , we
will assume that the class Response contains an attribute map of the predefined
Java type HashMap, in which we can pu t/get pairs of Strings. So, the

implementation of the action "Set Salutation" will look like:

response.map.put('salutation”,salutation)

550

OpenRules, Inc. OpenRule8 User Manual

How Rule Tables Are Executed

The rules inside rule tables are executed one-by-one in the order they are plac ed
in the table. The execution logic of one rule (row in the vertical table) is the

following:

| F ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false) , all
other condition s in the same rule (row) are ignored and are not evaluated. The
absence of a parameter in a condition cell means the condition is always
true. Actions are evaluated only if all conditions in the same row are evaluated
to be true and the action has non -empty parameters. Action columns with no

parameters are ignored.

For the default vertical rule tables, all rules are executed in top -down order.
There could be situations when all conditions in two or more rules (rows) are
satisfied. In that case, the actio ns of all rules (rows) will be executed, and the

actions in the rows below can override the actions of the rows above.
For horizontal rule tables, all rules (columns) are executed in left -to-right order.

Relationships between Rules inside Rule Tables

OpenRules® does not assume any implicit ("magic") execution logic , and executes
rules in the order specified by the rule designer. All rules are executed one -by-
one in the order they are placed in the rule table. There is a simple rule that

governs rules execution inside a rules table:

The preceding rules are evaluated and executed first!

OpenRules® supports the following types of rule tables that offer different

execution logic to satisfy different practical needs:

- Multi -hit rule tables
- Single-hit rule tables
- Rule Sequences.

560

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRule8 User Manual

Multi -Hit Rule Tables

A multi -hit rule table evaluates conditions in ALL rows before any action is
executed. Thus, actions are executed only AFTER all conditions for all rules
have already been evaluated. From this point of view, the execution logic is
different from traditional programming if -then logic. Let us consider a simple

example. We want to write a program "swap" that will do the f ollowing:

If x is equal to 1 then make x to be equal to 2.

If X is equal to 2 then make x to be equal to 1.

Suppose you decided to write a Java method assuming that there is a class App

with an integer variable x. The code may (but should not) look like this:

void swapX(App app) {
if (app.x == 1) app.x = 2;
if (app.x == 2) app.x = 1;

Obviously, this method will produce an incorrect result because of the missing
"else". This is Gobvious6to a software developer, but may not be at all obvious to
a business analyst. However, in a properly formatted rule table the following

representation would be a completely legitimate:

Then make x to be
If x equals to
equal to
2
2 1

It will also match ou r plain English description above. Here is the same table

with an extended technical view:

57©

OpenRules, Inc. OpenRule$ User Manual

Rules void swapX(App app)
C A
app.x == oldValue app.x = new\alue
int aldValue int new\alue
Then make x to be
If x equals to
equal to
1 2
2 1

Rules Overrides in Multi -Hit Rule Tables

There could be situations when all condit ions in two or more rules (rows) are
In that case, the actions of all rules

the

satisfied at the same time (multiple hits).
(rows) will be executed, but the actions in the rows below can override
actions of the rows above. This approach also allows a des igner to specify a very

natural requirement:

More specific rules should override more generic rules!

The only thing a desig ner needs to guarantee is that "more specific" rules are
placed in the same rule table after "more generic" rule s. For example, you may
want to execute Action -1 every time that Condition -1 and Condition -2 are

satisfied. However, if additionally, Condition -3 is also satisfied, you want to

execute Action-2. To do this, you could arrange your rule table in the following

way:
Condition -1 | Condition -2 | Condition -3| Action -1 Action -2
X X X
X X X X

In this table the second rule may override the first one (as you might naturally

expect).

580

OpenRules, Inc.

Let's consider the execution logic of the following multi

a salut ation "Mr.", "Mrs.", or "Ms." based on a customer's gender and marital

status:

OpenRule$ User Manual

-hit rule table that define s

Rules void defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation
Male Mr.

Female Married Mrs.

Female Single Ms.

If a customer is a m arried female , the conditions of the second rules are satisfied
and the salutation "Mrs." will be selected. This is only a business view of the
rules table. The complete view including the hidden implementation details

("Java snippets") is presented below:

Rules void defineSalutation(Customer customer, Response response)
C1 Cc2 Al

customer.gender.| customer.maritalStatus. | response.map.put('salutation”,s
equals(gender) equals(status) alutation);

String gender String status String salutation

Gender Marital Status Set Salutation
Male Mr.

Female Married Mrs.

Female Single Ms.

The OpenRulesEngine will execute rules (all 3 "white" rows) one after another.
For each row if conditions C1 and C2 are satisfied then the action A1l will be
executed with the selected "salutation". We may add one more rule at the very

end of this table:

Rules void defineSalutation(Customer customer, Response

response)

Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
?2??

590

OpenRules, Inc. OpenRule$ User Manual
In this case, after executing the second rule OpenRules ® will also execute the
new, 4th rule and will override a salutation "Mrs." with "??7?". Obviously this is
not a desirable result. However, sometimes it may have a positive effect by
avoiding undefined values in cases w hen the previous rules did not cover all
possible situations. What if our customer is a Divorced Female?! How can this
multi -hit effect be avoided? What if we want to produce "??7?" only when no o ther

rules have been satisfied?

Single-Hit Rule Tables

To achieve this you may use a so-called "single -hit " rule table, which is specified
by putting any return type except "void " after the keyword " Rules ". The
following is an example of a single -hit rule table that will do exactly what we

need:

Rules String defineSalutation(Customer customer, Response

response)
Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
?2??

Another positive effect of such "single -hithess" may be observed in connection
with large tables with sa y 1000 rows. | f OpenRules® obtains a hit on rule #10 it

would not bother to check the validity of the remaining 990 rules.

Having rule tables with a return value may also simplify your interface. For
example, we do not really need the special object Respo nse which we used to
write our defined salutation. Our simplified rule table produces a salutation

without an additional special object:

60©

OpenRules, Inc. OpenRule$ User Manual

Rules String defineSalutation(Customer customer)

Cl Cc2 Al
customer.gender. customer.maritalStatus .
return salutation;

equals(gender) .equals(status)

String gender String status String salutation
Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

??7?

Please note that the last action in this table should return a value that ha s the
same type as the entire single -hit table. The single -hit table may return any
standard or custom Java class such as String or Customer. Instead of basic Java
types such as "int" you should use the proper Java classes such as Integer in the

table signature.

Here is an example of Java code that creates an OpenRulesEngine and executes

the latest rules table "defineSalutation":

public static void main(String[] args)
String fileName = "file:rules/main/HelloCustomer.xIs";
OpenRulesEngine engine =

new OpenRulesEngine(fileName);
Customer customer = new Customer();
customer.setName("Robinson");
customer.setGender("Female");
customer.setMaritalStatus("Married");
String salutation =
(String) engine.r un("defineSalutation”, customer);

System.out.printin(salutation);

}
Rule Sequences

There is one more type of rule tablesc al | ed o Rul #atiS esgdumainlc e 0
internally within templates. Rule Sequence can be considered as a multi -hit rule
tabl e with only one difference in the execution logic , conditions are not evaluated
before execution of the actions. So, all rules will be executed in top -down order
with possible rules overrides . Rule actions are permitted to affect the conditions

of any rule s that follow theaction . The Kk &Kyles@dr s howul d be replaced

610

OpenRules, Inc.

anot her

kRulgSequende @.Let 6 s

get

following multi -hit table will correctly solve this problem

Rules void swapX{App app)

C A
app.x = newValue;
app.x == oldValue app.x:
int oldValue int new\alue

If x equals to

Then make x to be
equal to

1

2

2

1

However, a similar rule sequ ence

RuleSequence void swapX(App app)

C A
L app.x = new\alue;
app.x == oldValue app.x
int oldValue int newValue

If x equals to

Then make x to be
equal to

2

1

OpenRule$ User Manual

b a ¢ k exanaple.oTher

0swap|X«

will fail because when x is equal to 1, the first rule will make it 2, and

then the second rules will make it 1 again.

Relationships a mong Rule Tables

In most practical cases , business rules are not located in one file or in a sin gle

rule set, but rather are represented as a hierarchy of

located

Frequently,

execution logic of multiple decision tables.

in different files and directories

inter -related rule

tables

- seeBusiness Rules Repository .

Youmay uset he

t abl

the main Excel -file contains a main method that specifies the

e fa@Deci si on

the same purposes. In many cases the rule engine can execute decision tables

directly from a Java program 0 seeAPI.

620

OpenRules, Inc. OpenRule$ User Manual

Because OpenRules® interprets rule tables as regular methods, designers of rules
frequently create special "processing flow" decision tables to specify the

conditions under which different rules should be executed. See examples of

processing flow rules in such sample projects as Loan2 and LoanDynamics.

Simple AND / OR Conditions in Rule Tables

All conditions inside the same row (rule) are considered from left to right using

the AND logic. For example, to express

if (A>5 && B >10) {do something}

you may use the rule table:

Rules void testAND(int a, int b)

C1l C2 Al
a>5 b>10 System.out.printin(text)
String x String x String text
A>5 | B>10 ﬁ
X X Something

To express the OR logic

if (A>5 |[|[B> 10) {do something}

you may use the rules table:

Rules void testOR(int a, int b)

Cl C2 Al
a>5 b>10 System.out.printin(text)
String x String x String text
A>5 B>10
X X Something

Sometimes instead of creating a decision table it is more convenient to represent
rules using simple Java expressions inside Method tables. For example, the

above rules table may be easily represented as the following Method table:

630

OpenRules, Inc. OpenRule$ User Manual

Method void testOR(int &, int b)

if (@ > 5 || b>10) System.out.printin("Sonthing");

Horizontal and Vertical Rule Tables

Rule tables can be created in one of two possible formats:

- Vertical Format (default)

- Horizontal Format.

Based on the nature of the rule table, a rules creator can decide to use a vertical
format (as in the ex amples above where concrete rules go vertically one after
another) or a horizontal format where Condition and Action are located in the

rows and the rules themselves go into columns. Here is an example of the proper

horizontal format for the same rule tabl e "helloWorld":

Fules void helloVyorldiint hour) Ahorizontal
Hour From 0 12 18 23
Hour To 11 17 22 24

Greeting Good Morming | Good Afternoon | Good Evening | Good Might

OpenRules® automatically recognizes that a table has a vertical or a horizontal
format. You can use Excel's Copy and Paste Special feature to transpo se arule

table from one format to another.

Note. When a rule table has too many rules (more tha n you can see on one page)
it is better to use the vertical format to avoid Excel's limitations: a worksheet has

a maximum of 65,536 rows but itis limited to 2 56 columns.

Merging Cells

OpenRules® recognizes the powerful Cell Merging mechanism supported by
Excel and other standard table editing tools. Here is an example of a rule table

with merged cells:

640

OpenRules, Inc.

OpenRule$ User Manual

Rules void testMerge(String valuel, String value?2)

Rule C1l C2 Al A2

S , out("A2: " +
valuel.equals(val) value2.equals(val) out("Al: " + text); text):
String val String val String text String text
Name Value Text 1 Text 2
1 One 12
11+21
2 B Two 22
3 31 32
Three
4 D 41 42

The semantics of this ta ble is intuitive and described in the following table:

Restriction

Value| Value| Applied Printed

1 2 Rules Results
Al: 11+21

B One 1 A2 12
Al: 11+21

B Two 2 AD: 29
Al: 31

B | Three 3 AD: 30
Al: 41

D | Three 4 AD: 42

A Two none

D Two none

. We added the first column with rules numbers to avoid the known

implementation restriction that the very first column (the first row for horizontal

rule tables) cannot contain merged rows.

standard rule project "Merge"

t he

ver

standard

y first

col

deci si on

umn and

tabl es,

us e

Sub-Columns and Sub -Rows for Dynamic Arrays

number s

More examples can be found in the

- click here to analyze more rules. When you use

you may

t o

One table column can consist of several sub -columns (see sub-columns "Min" and

"Max"

in the example above).

You may efficiently use the Excel merge

650

put

mar k

t |he

each

http://openrules.com/docs/xls/MergeRules.xls
http://openrules.com/docs/man_rules.html#minmaxColumns

OpenRules, Inc. OpenRule8 User Manual

mechanism to combine code cells and to present them in the most intuitive way.

Here is an example with an unlimited number of sub -columns:

C6

contains(rates,customer.rate)

String[] rates

As you can see, condition C6 contains 4 sub -columns for different combinations of

rates. The cells in the Condition, code, parameters and display values , rows are
merged. You can insert more sub -columns (use Excel's menu "Insert") to handle

more rate combinations if necessary without a ny changes in the code. The
parameter row is defined as a String arra 'y, String][] rate s. The actual values
of the parameters should go from left to right and the first empty value in a sub -
column should indicate the end of the array " rates". You can see the complete

example in the rule table "Rule Family 212" in the file Loanl.xls .

If your rule table has a horizontal format, you may use multiple sub -rows in a
similar way (see the example in file UpSell.xls).
Using Expressions inside Rule Tables

OpenRules® allows a rules designertouse 06 al most 6 nat uxpes$sionsanguage
inside rule tables to represent intervals of numbers, strings, dates, etc. You also

may use Java expressions whenever necessary .

Integer and Real Interval s

You may use plain English expressions to define different intervals for integer
and real decision variables inside rule tables. Instead of creating multiple

columns for defining different ranges for integer and real values, a business user

660

http://openrules.com/docs/xls/Loan1.xls
http://openrules.com/docs/xls/UpSell.xls

OpenRules, Inc. OpenRule$ User Manual
may define from -to intervals in practically unlimited English using such phrases

as: "500-1000", "between 500 and 1000", "Less than 16", "More or equals to 17",
"17 and older", "< 50", ">=10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by
specifying their two bounds or sometimes only one bound. Here are some

examples of valid integer intervals:

Cell Expression

Comment

5

equalsto 5

[5,10] contains 5, 6, 7, 8, 9, and 10

5:10 contains 5, 6, 7, 8, 9, and 10

[5,10) contains 5 but not 10

5-10 contains 5 and 10

5-10 contains 5 and 10

5-10 contains 5 and 10

-5-20 contains -5 and 20

5 --90 error: left bound is greater than the right
one

-5--2 contains -5, -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5

does not contain 5

more 10

does not contain 10

more than 10

does not contain 10

10+ more than 10

>10 does not contain 10
>=10 contains 10
between 5 and 10 contains 5 and 10
no less than 10 contains 10

no more than 5 contains 5

670

